首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) has been purified to homogeneity from skeletal muscle of the newt Pleurodeles waltl (Amphibia, Urodela). The purification procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulted in a 24-fold increase in specific activity and a final yield of approximately 46%. The native protein exhibited an apparent molecular weight of approximately 146 kDa with absolute specificity for NAD(+). Only one GAPDH isoform (pI 7.57) was obtained by chromatofocusing. The enzyme is an homotetrameric protein composed of identical subunits with an apparent molecular weight of approximately 37 kDa. Monospecific polyclonal antibodies raised in rabbits against the purified newt GAPDH immunostained a single 37-kDa GAPDH band in extracts from different tissues blotted onto nitrocellulose. A 510-bp cDNA fragment that corresponds to an internal region of a GapC gene was obtained by RT-PCR amplification using degenerate primers. The deduced amino acid sequence has been used to establish the phylogenetic relationships of the Pleurodeles enzyme--the first GAPDH from an amphibian of the Caudata group studied so far--with other GAPDHs of major vertebrate phyla.  相似文献   

2.
A mannose isomerase from Agrobacterium radiobacter M-1 (formerly Pseudomonas sp. MI) was purified to electrophoretic homogeneity and characterized. A cell-free extract was separated by ammonium sulfate fractionation, Butyl-Toyopearl 650M, DEAE-Sepharose and hydroxylapatite column chromatography. Its molecular mass was estimated to be 44 kDa by SDS-PAGE and 90 kDa by gel filtration, in which the enzyme is most likely a dimer composed of two identical subunits. The purified enzyme had an optimum pH at 8.0, an optimum temperature at 60 degrees C, a pI of 5.2 and a Km of 20 mM, and specifically converted D-mannose and D-lyxose to ketose. The N-terminal amino acid sequence was identified.  相似文献   

3.
A mannose isomerase from Agrobacterium radiobacter M-1 (formerly Pseudomonas sp. MI) was purified to electrophoretic homogeneity and characterized. A cell-free extract was separated by ammonium sulfate fractionation, Butyl-Toyopearl 650M, DEAE-Sepharose and hydroxylapatite column chromatography. Its molecular mass was estimated to be 44 kDa by SDS-PAGE and 90 kDa by gel filtration, in which the enzyme is most likely a dimer composed of two identical subunits. The purified enzyme had an optimum pH at 8.0, an optimum temperature at 60°C, a pI of 5.2 and a Km of 20 mM, and specifically converted D-mannose and D-lyxose to ketose. The N-terminal amino acid sequence was identified.  相似文献   

4.
A pectate lyase (pectate transeliminase; EC 4.2.2.2), designated Pel-15E, was purified to homogeneity from a culture broth of alkaliphilic Bacillus sp. strain KSM-P15. The purified enzyme had a molecular mass of approximately 33 kDa, as determined by SDS/PAGE, and a pI of approximately pH 9.2. Pel-15E exhibited optimum activity at pH 10.5 and 50-55 degrees C in glycine/NaOH buffer. Pel-15E had an absolute requirement for Ca2+ ions for manifestation of the enzymatic activity and trans-eliminated poly(galacturonic) acid, most likely by endo-type cleavage. A gene for the enzyme, which was cloned using the shotgun method and sequenced, contained a 960-bp ORF encoding 320 amino acids. The mature enzyme (286 amino acids, 32 085 Da) from the deduced amino-acid sequence showed quite low homology to known Pels from various microorganisms with 16.1-20.4% identity. Furthermore, we were not able to find any conserved regions in the sequence of Pel-15E when aligned with the sequences of other enzymes from the established Pel superfamily. However, Pel-15E had some regions that were homologous to PelA from Azospirillum irakense with 39.8% identity. Based on their amino-acid sequence homology, Pel-15E and PelA appear to belong to a new class of Pel family, although the enzymatic properties of both enzymes were quite different.  相似文献   

5.
Three fractions of rye-grass (Lolium perenne) pollen extract have been isolated by preparative isoelectric focusing (i.e.f.) and characterized in terms of physicochemical and immunochemical properties. The purified components were designated 'R7' and 'R14' on the basis of their positions in relation to other rye-grass pollen extract components on SDS/polyacrylamide-gel electrophoresis and their apparent molecular masses were assessed as 31 and 11 kDa respectively. On i.e.f., R14 split into two components, one acidic (pI 5.0) and one basic (pI 9.0), termed 'R14a' and 'R14b' respectively, and R7 focused at pI 5.8. R7 and R14a were shown to be allergenic by skin-prick test and all three components were recognized by rye-grass-pollen-specific human IgE. On SDS/polyacrylamide-gel electrophoresis and i.e.f., R7 behaved in a manner identical with that shown by an authentic sample of Rye I and gave an amino acid analysis similar to published data [Johnson & Marsh (1966) Immunochemistry 3, 91-100] for Rye group-I isoallergens; the amino acid sequence of the first 27 N-terminal amino acids was also determined. Physicochemical analysis revealed that R14a was equivalent to Rye II and 14b to Rye III. Preparative i.e.f. followed by gel-permeation chromatography proved to be a rapid and efficient method for purifying the allergenic components of Rye I (R7), Rye II (R14a) and Rye III (R14b) from rye-grass pollen extract.  相似文献   

6.
Cytotechnology - We found that strawberry extract suppressed immunoglobulin (Ig) E production in vitro and in vivo, and identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as one of the IgE...  相似文献   

7.
Aspergillus species of fungi have been known to be one of the most prevalent aeroallergens. One important A. flavus allergen (Asp fl 1) was identified by means of immunoblotting with a serum pool of allergic patients on a two-dimensional electrophoretic gel. The cDNA coding for Asp fl 1 was cloned and sequenced. The clone encodes a full-length protein of 403 amino acid precursors of 42 kDa. After cleavage of a putative signal peptide of 21 amino acids and a prepeptide of 100 amino acids, a mature protein of 282 amino acids was obtained with a molecular mass of 33 kDa and a pI of 6.3. A degree of identity was found in a range of 27 to 84% among related allergens derived from bacteria allergen subtilisin, mold allergen Pen c 1, and virulence factor of A. fumigatus. Recombinant Asp fl 1 (rAsp fl 1) was cloned into vector pQE-30 and expressed in E. coli M15 as a histidine-tag fusion protein and purified to homogeneity. The IgE binding capacity of rAsp fl 1 was tested by immunoblotting using a serum pool of Aspergillus-allergic patients. Recombinant allergen cross-reacted strongly with IgE specific for natural Asp fl 1 and Pen c 1, indicating that common IgE epitopes may exist between allergens of A. flavus and P. citrinum.  相似文献   

8.
Binding of Porphyromonas gingivalis to the host cells is an essential step in the pathogenesis of periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are thought to be involved in this process. In our earlier studies, two major epithelial cell components of 40 and 50 kDa were identified as potential fimbrial receptors. Sequencing of a cyanogen bromide digestion fragment of the 50-kDa component resulted in an internal sequence identical to keratin I molecules, and hence this cytokeratin represents one of the epithelial cell receptors for P. gingivalis fimbriae. In this study, the 40-kDa component of KB cells was isolated and its amino-terminal sequence determined. The N-terminal amino sequence was found to be GKVKVGVNGF and showed perfect homology with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Furthermore, purified P. gingivalis fimbriae were found to bind to rabbit muscle GAPDH. Antibodies directed against internal peptide 49-68 and 69-90 of fimbrillin were shown to inhibit the binding of P. gingivalis and of fimbriae to epithelial cells. Antibodies against these peptides also inhibited the binding of fimbriae to GAPDH. Our results confirmed that the amino-terminal domain corresponding to amino residues 49-68 of the fimbrillin protein is the major GAPDH binding domain. These studies point to GAPDH as a major receptor for P. gingivalis major fimbriae and, as such, GAPDH likely plays a role in P. gingivalis adherence and colonization of the oral cavity, as well as triggering host cell processes involved in the pathogenesis of P. gingivalis infections.  相似文献   

9.
Western-blot analysis using antiserum to 3T3-L1-cell fatty acid binding protein (FABP) revealed that pig adipose tissue contains a 15 kDa protein immunologically similar to the murine protein. This 15 kDa protein was purified from pig adipose tissue by sequential application of Sephadex G-50 gel filtration, cation exchange and covalent chromatography on Thiol-Sepharose-4B. The purity of the pig protein was established by two-dimensional polyacrylamide-gel electrophoresis. Isoelectric focusing indicated that the pig adipose FABP (a-FABP) exists with two charge isoforms (pI 5.1 and 5.2), both of which persist after delipidation. The N-terminus of the purified pig a-FABP was blocked; however, cleavage with CNBr allowed recovery of a 12-amino-acid peptide which was identical with the murine a-FABP sequence (residues 36-48) at 10 of 12 positions. The pig a-FABP bound 12-(9-anthroyloxy)oleic acid saturably and stoichiometrically, with an apparent dissociation constant of 1.0 microM. Northern-blot analysis using the cDNA for the murine 3T3-L1 FABP revealed that the pig a-FABP was expressed exclusively in adipose tissue.  相似文献   

10.
tRNA (m5U54)-methyltransferase (EC 2.1.1.35) catalyzes the transfer of methyl groups from S-adenosyl-L-methionine to transfer ribonucleic acid (tRNA) and thereby forming 5-methyluridine (m5U, ribosylthymine) in position 54 of tRNA. This enzyme, which is involved in the biosynthesis of all tRNA chains in Escherichia coli, was purified 5800-fold. A hybrid plasmid carrying trmA, the structural gene for tRNA (m5U54)-methyltransferase was used to amplify genetically the production of this enzyme 40-fold. The purest fraction contained three polypeptides of 42 kDa, 41 kDa and 32 kDa and a heterogeneous 48-57-kDa RNA-protein complex. All the polypeptides seem to be related to the 42/41-kDa polypeptides previously identified as the tRNA (m5U54)-methyltransferase. RNA comprises about 50% (by mass) of the complex. The RNA seems not to be essential for the methylation activity, but may increase the activity of the enzyme. The amino acid composition is presented and the N-terminal sequence of the 42-kDa polypeptide was found to be: Met-Thr-Pro-Glu-His-Leu-Pro-Thr-Glu-Gln-Tyr-Glu-Ala-Gln-Leu-Ala-Glu-Lys- . The tRNA (m5U54)-methyltransferase has a pI of 4.7 and a pH optimum of 8.0. The enzyme does not require added cations but is stimulated by Mg2+. The apparent Km for tRNA and S-adenosyl-L-methionine are 80 nM and 17 microM, respectively.  相似文献   

11.
Y Tamaru  T Araki  H Amagoi  H Mori    T Morishita 《Applied microbiology》1995,61(12):4454-4458
A beta-mannanase (EC 3.2.1.78) from Vibrio sp. strain MA-138 was purified by ammonium sulfate precipitation and several chromatographic procedures including gel filtration, adsorption, and ion-exchange chromatographies. The final ion-exchange chromatography Mono Q yielded one major active fraction and three minor active fractions. The major active fraction was purified to homogeneity on the basis of native polyacrylamide gel electrophoresis (PAGE). This purified enzyme was identified as a glycoprotein by periodic acid-Schiff staining and a monomeric protein with a molecular mass of 49 kDa by sodium dodecyl sulfate-PAGE. The pI of the enzyme was 3.8. The purified enzyme exhibited maximal activity at pH 6.5 and 40 degrees C and hydrolyzed at random the internal beta-1,4-mannosidic linkages in beta-mannan to give various sizes of oligosaccharides. The first 20 N-terminal amino acid sequence of the purified enzyme showed high homology with the N-terminal region of beta-mannanase from Streptomyces lividans 66.  相似文献   

12.
The NAD+-dependent cytosolic glyceralehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) was purified from the skeletal muscle of European pilchard Sardina pilchardus and its physicochemical and kinetic properties were investigated. The purification method consisted of two steps, ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography, resulting in an approximately 78-fold increase in specific activity and a final yield of approximately 25%. The Michaelis constants (Kin) for NAD+ and D-glyceraldehyde-3-phosphate were 92.0 μM and 73.4 μM, respectively. The maximal velocity (Vmax) of the purified enzyme was estimated to be 37.6 U/mg. Under the assay conditions, the optimum pH and temperature were 8.0 and 30 ℃. The molecular weight of the purified enzyme was 37 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Non-denaturing polyacrylamide gels yielding a molecular weight of 154 kDa suggested that the enzyme is a homotetramer. Polyclonal antibodies against the purified enzyme were used to recognize the enzyme in different sardine tissues by Western blot analysis. The isoelectric point, obtained by an isoelectric focusing system in polyacrylamide slab gels, revealed only one GAPDH isoform (pI 7.9).  相似文献   

13.
A barley peroxidase (BP 1) of pI ca. 8.5 and M r 37000 has been purified from mature barley grains. Using antibodies towards peroxidase BP 1, a cDNA clone (pcR7) was isolated from a cDNA expression library. The nucleotide sequence of pcR7 gave a derived amino acid sequence identical to the 158 C-terminal amino acid residues of mature BP 1. The clone pcR7 encodes an additional C-terminal sequence of 22 residues, which apparently are removed during processing. BP 1 is less than 50% identical to other sequenced plant peroxidases. Analyses of RNA and protein from aleurone, endosperm and embryo tissue showed maximal expression 15 days after flowering, and high levels were found only in the endosperm. BP 1 was not expressed in the leaves.  相似文献   

14.
A 41,000 Mr cytosolic protein (p41) in Dictyostelium discoideum was shown to be modified by ADP-ribosylation that was not regulated by nitric oxide (NO). This endogenous ADP-riboxylation was optimal at conditions distinct from those optimal for the NO-stimulated ADP-ribosylation of p41. These two activities were also differentially sensitive to reducing agents and modified different amino acids. The addition of haemoglobin, which sequesters NO, and 3 the NO synthase inhibitors failed to block the endogenous ADP-ribosylation. P41 was purified to homogeneity. The N-terminal sequence of the purified protein was shown to be highly homologous to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Both endogenous and NO-stimulated activities ADP-ribosylated three isoforms of the protein, with pI values of 6.6., 6.8 and 7.0. In each case, the isoform with pI 6.8 was preferentially modified. Experiments using purified GAPDH indicate that both the endogenous and NO-stimulated ADP-ribosylation are self-catalysed modifications.  相似文献   

15.
When delipidated Mr>10,000 cut-off human fetal lung cytosol was separated on gel filtration and ion-exchange chromatography on Auto-FPLC system, two fatty acid-binding proteins (FABPs) of pI 6.9 and pI 5.4 were purified to homogeneity. On Western blotting analysis with the anti-human fetal lung pI 6.9 FABP, these two proteins showed immunochemical cross reactivity with each other and with purified hepatic FABPs but not with cardiac or gut FABP. These two FABPs have identical molecular mass of 15.2 kDa, which is slightly higher than that of the hepatic proteins (14.2 kDa). Carbohydrate covalently linked to FABPs, that may substantially add to the molecular mass, was not detected in the purified protein preparations. Amino acid analysis revealed that both the proteins have same amino acid composition each containing one Trp residue that is lacking in hepatic FABP. Different isoforms of lung FABP exhibited different binding ability for their natural ligands. These proteins bind palmitoyl CoA with higher affinity than oleic acid. pI 6.9 FABP can more rapidly and efficiently transfer fatty acid than can pI 5.4 FABP from unilammelar liposomes. Thus these FABPs may play a critical role in fatty acid transport during human fetal lung development.Abbreviations AO anthroyloxy - 12-AS 12-(9-anthroyloxy)stearic acid - FABP fatty acid-binding protein - NBD-PE [N-(4-nitrobenzo-2-oxa-1,3-diazole)phosphatidylethanolamine - Pal-CoA palmitoyl coenzyme A - PITC phenylisothiocyanate - PBS phosphate-buffered saline - PtdCho phosphatidylcholine - SUV small unilamellar vesicle - Tris tris(hydroxymethyl) amino methane  相似文献   

16.
A gene (alyPEEC) encoding an alginate lyase of Pseudoalteromonas elyakovii IAM 14594 was cloned using the plasmid vector pUC118 and expressed in Escherichia coli. Sequencing of a 3.0kb fragment revealed a 1,197bp open reading frame encoding 398 amino acid residues. The calculated molecular mass and isoelectric point of the alyPEEC gene product are 43.2 kDa and pI 5.29. A region G(165) to V(194) in the AlyPEEC internal sequence is identical to the N-terminal amino acid sequence of the previously purified extracellular alginate lyase of P. elyakovii, and the calculated molecular mass (25.4 kDa) and isoelectric point (pI 4.78) of the region resembled those of the purified enzyme. Expression of enzymically-active alginate lyase from alyPEEC required growth of recombinant E. coli in LB broth containing 50% (v/v) artificial seawater (ASW). Alginate lyase activity with broad substrate specificity was detected in both 42 and 30 kDa products. Subcloning of the region G(165) to N(398) of AlyPEEC corresponding to the 30 kDa protein confirmed that this region of the alyPEEC gene encoded the active site of the enzyme. A region A(32) to G(164) corresponding to about 13 kDa of the N-terminal region of AlyPEEC showed about 30% identity to a putative chitin binding domain of Streptomyces chitinases, but did not exhibit any catalytic activity.  相似文献   

17.
Agmatine coumaroyltransferase (ACT), which catalyzes the first step in the biosynthesis of antifungal hydroxycinnamoylagmatine derivatives, was purified to apparent homogeneity from 3-day-old etiolated barley (Hordeum vulgare L.) seedlings. The enzyme was highly specific for agmatine as acyl acceptor and had the highest specificity for p-coumaroyl-CoA among various acyl donors with a specific activity of 29.7 nanokatal x mg(-1) protein. Barley ACT was found to be a single polypeptide chain of 48 kDa with a pI of 5.20 as determined by isoelectric focusing. The 15 N-terminal amino acid residues were identified by micro-sequencing of the native protein and were used to clone a full-length barley ACT cDNA that predicted a protein of 439 amino acid residues. The sequence was devoid of N-terminal signal peptide, suggesting a cytosolic localization of barley ACT. Recombinant ACT produced and affinity-purified from Escherichia coli had a specific activity of 189 nanokatal x mg(-1) protein, thus confirming the identity of the purified native protein. A partial cDNA sequence for ACT was obtained from wheat that predicted a protein of 353 amino acid residues and had 95% sequence identity to barley ACT. Two motifs in the amino acid sequence reveal that barley ACT represents a new class of N-hydroxycinnamoyltransferases belonging to the transferase superfamily. The barley ACT is unique in producing the precursor of hordatine, a proven antifungal factor that may be directed toward Blumeria graminis.  相似文献   

18.
A germin-like protein of wheat leaf apoplast inhibits serine proteases   总被引:3,自引:0,他引:3  
A protein resistant to heat and proteolysis that inhibits serine proteases was isolated from wheat leaf apoplasts. Based on trypsin inhibition, its more active form was a 66-69 kDa oligomer. It was dissociated in an 18-21 kDa monomer having an amino terminal sequence identical to the Box A of germins and germin-like proteins. Like these proteins, it was glycosylated and showed manganese superoxide dismutase activity. The monomer displayed three forms when examined by 2D western blot: two of 19 kDa, pI 5.8 and 6.2; and one of 21 kDa, pI 5.8. It was found that the protein controls serine protease activity in the apoplast of plants challenged with the fungus Septoria tritici.  相似文献   

19.
Previous reports showed that hydrogen peroxide and the NO-generating reagent sodium nitroprusside (SNP)-modulated enzymatic activity of animal glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12). These modifications are suggested to have a physiological regulatory role. To gain further insight into this regulatory process the model ciliated protozoan Tetrahymena pyriformis was chosen. Both reagents inhibited growth of T. pyriformis cultures and produced a specific increase of GAPDH protein but only NO seemed to reduce GAPDH activity in cell-free extracts. Both specific activity and pI were found to be altered in the in vivo NO-treated purified enzyme, but no effect was detected by the in vivo H(2)O(2) treatment. Analytical chromatofocusing showed a single basic isoform (pI 8.8) in enzyme preparations from control and H(2)O(2)-treated cells. In contrast to this, three more acidic isoforms (pIs, 8.6, 8.0 and 7.3) were resolved in purified fractions from SNP-treated cells, suggesting post-translational modification of the enzyme by NO. Nevertheless, a decrease of GAPDH activity by H(2)O(2) and NO, mainly due to a decrease in its V(max) without apparent change in substrate affinity, was observed in vitro in the whole enzyme population. The increase of GAPDH protein level found in vivo suggests a cell response in order to compensate for the inhibitory effect on activity observed in the purified enzyme. This is the first report of NO- and H(2)O(2)-dependent effects on GAPDH of T. pyriformis, and identifies this key protein of central carbon metabolism as a physiological target of oxidative and nitrosative stress in this ciliated protozoan.  相似文献   

20.
A soluble inorganic pyrophosphatase was isolated from a crude extract of Microcystis aeruginosa by adsorption chromatography. The enzyme was purified to homogeneity as judged by sodium dodecyl sulfate (SDS) and nondenaturing polyacrylamide gel electrophoresis and N-terminal amino acid analysis. The molecular mass was estimated to be 80 kDa by gel filtration chromatography, 87 kDa by nondenaturing polyacrylamide gel electrophoresis, and 28 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme has an isoelectric point of 4.5, which is similar to the pI values reported for other soluble inorganic pyrophosphatases. The sequence of 29 N-terminal amino acids was determined; only 4 of these amino acids are identical to those in the sequence of Saccharomyces cerevisiae inorganic pyrophosphatase. M. aeruginosa inorganic pyrophosphatase is a Mg(2+)-dependent enzyme exhibiting a pH optimum of around 7.5. Its KM value for inorganic pyrophosphate was estimated to be 1.30 mM. A specific antibody was raised in chicken to M. aeruginosa inorganic pyrophosphatase. No immunological cross-reactivity was seen when Western blots of partially purified S. cerevisiae or Escherichia coli inorganic pyrophosphatase were probed with the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号