首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Life history and recruitment information of tropical trees in natural populations is scarce even for important commercial species. This study focused on a widely exploited Neotropical canopy species, Pachira quinata (Malvaceae), at the southernmost, wettest limit of its natural distribution, in the Colombian Amazonia. We studied phenological patterns, seed production and natural densities; assessed the importance of seed dispersal and density-dependent effects on recruitment, using field experiments. At this seasonal forest P. quinata was overrepresented by large adult trees and had very low recruitment caused by the combination of low fruit production, high seed predation and very high seedling mortality under continuous canopies mostly due to damping off pathogens. There was no evidence of negative distance or density effects on recruitment, but a clear requirement of canopy gaps for seedling survival and growth, where pathogen incidence was drastically reduced. In spite of the strong dependence on light for survival of seedlings, seeds germinated readily in the dark. At the study site, the population of P. quinata appeared to be declining, likely because recruitment depended on the rare combination of large gap formation with the presence of reproductive trees nearby. The recruitment biology of this species makes it very vulnerable to any type of logging in natural populations.  相似文献   

2.
An hypothesized advantage of seed dispersal is avoidance of high per capita mortality (i.e. density-dependent mortality) associated with dense populations of seeds and seedlings beneath parent trees. This hypothesis, inherent in nearly all seed dispersal studies, assumes that density effects are species-specific. Yet because many tree species exhibit overlapping fruiting phenologies and share dispersers, seeds may be deposited preferentially under synchronously fruiting heterospecific trees, another location where they may be particularly vulnerable to mortality, in this case by generalist seed predators. We demonstrate that frugivores disperse higher densities of Cornus florida seeds under fruiting (female) Ilex opaca trees than under non-fruiting (male) Ilex trees in temperate hardwood forest settings in South Carolina, USA. To determine if density of Cornus and/or Ilex seeds influences survivorship of dispersed Cornus seeds, we followed the fates of experimentally dispersed Cornus seeds in neighborhoods of differing, manipulated background densities of Cornus and Ilex seeds. We found that the probability of predation on dispersed Cornus seeds was a function of both Cornus and Ilex background seed densities. Higher densities of Ilex seeds negatively affected Cornus seed survivorship, and this was particularly evident as background densities of dispersed Cornus seeds increased. These results illustrate the importance of viewing seed dispersal and predation in a community context, as the pattern and intensity of density-dependent mortality may not be solely a function of conspecific densities.  相似文献   

3.
The effect of seed aggregation and distance from conspecific trees on seed predation was experimentally examined for two neotropical tree species, Macoubea guianensis (Apocynaceae) and Pouteria sp. (Sapotaceae) in a lowland tropical rain forest in northeastern Peru. Results of these experiments are discussed in the context of the Janzen-Connell model (Janzen 1970; Connell 1971), which predicts decreased seed survival near parent trees due to either density-or distance-responsive mortality, and Howe's model (Howe 1989) which predicts that trees with seeds dispersed in clumps (aggregated) will not suffer density-dependent predation, and will have higher survival of seeds near the parent tree than other trees. We also examined whether predation on seeds of these species was affected by seed placement in or near 30-m-wide strips regenerating after clear-cutting. Both species appeared to be mammal-dispersed but differed in how frugivores handled seeds, seed size, overall fruit crop size, and gemination time. Neither of the two species studied appeared to suffer seed predation in a manner predicted by the Janzen-Connell model, and patterns of seed predation for only one of the species was similar to predictions of Howe's model. For neither species did seed predation along the edge of, or in the center of, regenerating clear cuts differ from predation 15 m into the primary forest. For Pouteria, seed predation in and near regnerating strips was significantly greater than around forest trees, but the opposite pattern held for Macoubea. Overall, seed predation was much greater on Macoubea. The difference in seed predation for these two species was most likely a result of differences in the types of seed predators that attacked these two species.  相似文献   

4.
F. A. Jones  L. S. Comita 《Oikos》2010,119(11):1841-1847
Negative density‐dependent demographic processes operating at post‐dispersal seed, seedling, and juvenile stages are the dominant explanation for the coexistence of high numbers of tree species in tropical forests. At adult stages, the effect of pollinators and pre‐dispersal fruit predators are often dependent on the density or abundance of flowers and fruit in the canopy, but each have opposite effects on individual realized reproduction. We studied the effect of density on total and mature fruit set and pre‐dispersal predation rates within individual tree canopies in a common canopy tree species, Jacaranda copaia in a 50‐ha forest census plot in central Panama. We sampled all reproductive sized trees in the plot (n = 188) across three years and estimated fruit set and predation rates. Population‐wide pre‐dispersal seed predation averaged between 6–37% across years. Using linear mixed effects models, we found that increased density and fecundity of conspecific neighbours increased focal tree fruit set, but also the rate of pre‐dispersal predation. An interaction between individual and neighbourhood fruit production predicted lower predation rates at high individual and neighbourhood fecundities, which suggests predator satiation at high fruit abundance levels. However, the rate at which fruit set increased with conspecific neighbour fruit production was greater than the rate at which fruit were lost to predation, resulting in an overall positive effect of neighbour density on mature fruit production in focal trees. Our results run counter to the expectation of a uniformly negative effect of density across all life stages in tropical trees and suggest further exploration of the role of spatial clumping, pollen dispersal limitation, and predation at pre‐dispersal adult stages in maintenance of species diversity in plant communities.  相似文献   

5.
So far, it is poorly understood how differential responses of avian seed dispersers and fruit predators to changes in habitat structure and fruit abundance along land-use gradients may translate into consequences for the seed dispersal of associated plants. We selected a gradient of habitat modification (forest, semi-natural, and rural habitat) characterized by decreasing tree cover and a high variation in local fruit availability. Along this gradient we quantified fruit removal by avian seed dispersers and fruit predators from 18 Sorbus aucuparia trees. We analyzed the relative importance of tree cover and fruit abundance in explaining species richness, abundance and fruit removal rates of both guilds from S. aucuparia trees. Species richness and abundance of seed dispersers decreased with decreasing tree cover, whereas fruit removal by seed dispersers decreased with decreasing fruit abundance independent of tree cover. Both variables had no effect on species richness, abundance and fruit removal by fruit predators. Consequently, seed dispersers dominated relative fruit removal in fruit-rich sites but the dispersal/predation ratio shifted in favor of predation in fruit-poor habitat patches. Our study demonstrates that variation in local habitat structure and fruit abundance can cause guild-specific responses. Such responses may result in a shift in fruit removal regimes and might affect the dispersal ability of dependent fruiting plants. Future studies should aim at possible consequences for plant recruitment and guild-specific responses of frugivores to disturbance gradients on the level of entire plant–frugivore associations.  相似文献   

6.
Lawson  Dan  Inouye  Richard S.  Huntly  Nancy  Carson  Walter P. 《Plant Ecology》1999,145(2):267-279
We surveyed vegetation along forest margins in a 65-year chronosequence of old-fields at the Cedar Creek Natural History Area in east-central Minnesota, USA, to identify successional patterns of woody plants and to determine if these were correlated with soil nitrogen. We predicted that shrub and tree abundance, size, and distance of occurrence from the forest edge would be correlated with field age or soil nitrogen. Instead we did not find successional trends in the abundance or composition of woody species. Even in the oldest field the abundance of trees and shrubs was low and concentrated in areas close to the forest. Though trees were larger and present further from the forest edges in older fields, average tree height was less than 126 cm in all fields.Since we did not find successional trends we looked at various local factors (local seed sources, deer browsing, and forest edge aspect) and their relation to recruitment, mortality, or growth to explain variation among fields in abundance of trees or shrubs. The three most common tree species (Quercus rubra, Q. macrocarpa,and Populus tremuloides) all had a higher relative abundance of seedlings, and two (Q. rubra and Q. macrocarpa) had a higher relative abundance of large trees adjacent to forests with a high abundance of conspecific adults. Most trees taller than 20 cm were browsed by deer and were shorter in 1995 than they were in 1993. Mortality was higher for trees less than 30 cm indicating that mortality was size-dependent. Forest edge aspect did not significantly influence the abundance or demography of any species. Our results suggest that the patterns of seedling recruitment were largely determined by the proximity of seed sources and that these patterns may persist so that tree communities in old-fields resemble adjacent forests. Deer may be a significant factor in the suppression of tree populations in old-fields through repeated browsing which reduces tree growth and elevates tree mortality by prolonging the period of time trees remain susceptible to size-dependent mortality.  相似文献   

7.
We present a graphic model that explores the effect of distance between parent plants on seed predation and seedling recruitment. Based on the assumption that distance between parents may affect the shape of the seed shadow, the model predicts that seed predators may affect seedling recruitment curves under isolated plants but they are unable to affect these curves under close parent plants. The predictions of the model are tested experimentally in Cryptocarya alba (Lauraceae), a common tree of the Mediterranean forest, Central Chile. Results show that predictions are not met under isolated parent plants. Although seed density decreases significantly away from parent plants, this effect is not relevant for seed predation and seedling recruitment. The biotic/abiotic contrast existing under the canopy vs outside the canopy, plus the shade-tolerance of this tree, better explains the seedling recruitment observed under isolated parent plants. Nevertheless, the predictions of the model are corroborated under close parent plants. Seed shadows overlap to the extent that they generate a homogeneous seed distribution, homogeneous seed predation and homogeneous seedling recruitment as well. We discuss the implications of the model in terms of the spatial pattern of seedlings and the benefits of dispersal from isolated and close parent plants.  相似文献   

8.
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.  相似文献   

9.
In Neotropical humid forest, the majority of tree species have seeds dispersed by vertebrates. Seed deposition by vertebrates is often spatially aggregated and a low per capita survival for seeds and seedlings is predicted. However, mortality factors could be saturated by high densities. I evaluated whether recruitment of saplings of species dispersed by black and gold howlers (Alouatta caraya) in latrines is higher than at control sites: (1) below parent trees, (2) in trees not used by monkeys to sleep, (3) randomly chosen sites within the forest, and determined whether howlers may influence current floristic composition of the Paraná River flooded forest. I recorded saplings several years old in the territories of five monkey groups. In total, I found four times more saplings in latrines than in the other areas, and results suggest that latrines are recruitment foci for most species, though larger samples would be required to assess this for every species. Frequency distribution of the diameter of tallest saplings of more abundant species reflected recruitment over time. I found saplings of more species growing in latrines than outside of them. Saplings higher than 1 m of two species of laurels (Ocotea diospyrifolia and Nectandra megapotamica) and one species of Myrtaceae (Eugenia punicifolia) had higher densities in latrines than below parent trees. Results suggest that mortality factors were saturated in latrines and that sapling may grow at a higher rate in latrines. In relation to the influence on floristic composition E. burkartiana, an uncommon species in the forest, could increase in abundance as consequence of seed dispersal by howlers.  相似文献   

10.

Background

The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity.

Methodology/Principal Findings

We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species.

Conclusions/Significance

Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.  相似文献   

11.
Seed predation, an omnipresent phenomenon in tropical rain forests, is an important determinant of plant recruitment and forest regeneration. Although seed predation destroys large amounts of the seed crop of numerous tropical species, in many cases individual seed damage is only partial. The extent to which partial seed predation affects the recruitment of new individuals in the population depends on the type and magnitude of alteration of the germination behavior of the damaged seeds. We analyzed the germination dynamics of 11 tropical woody species subject to increasing levels of simulated seed predation (0-10% seed mass removal). Germination response to seed damage varied considerably among species but could be grouped into four distinct types: (1) complete inability to germinate under damage ≥1%, (2) no effect on germination dynamics, (3) reduced germination with increasing damage, and (4) reduced final germination but faster germination with increasing damage. We conclude that partial seed predation is often nonlethal and argue that different responses to predation may represent different proximal mechanisms for coping with partial damage, with potential to shape, in the long run, morphological and physiological adaptations in tropical, large-seeded species.  相似文献   

12.
The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings (‘Janzen–Connell’ effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest.  相似文献   

13.
In addition to acting as seed predators, some terrestrial mammals bury seeds via scatter hoarding. This study system used two permanent plots in examining the interaction between small rodents and the seeds of the palm Astrocaryum mexicanum. We tested how experimental burial, and fruiting status of the parent, distance to the parent, seed size, and microsite characteristics affect the survival of these seeds. Up to 34% of the buried seeds that were exposed only to ignorant rodent foragers (individuals not responsible for burial) survived. In comparison, less than 1% of seeds buried by scatter hoarding rodents survived in previous studies, a percentage that is comparable to the low survival of unburied seeds in this study (<2%). Although unburied seeds had very low survival, increasing distance and/or seed density positively affected survival of unburied seeds. Distance to parent had no effect on buried seed survival.
Buried seed survival was most strongly and significantly determined by the fruiting status of the trees under which they occurred. Seeds experienced significantly greater predation if buried under “parent” trees that fruited during the experiment. Buried seed survival was also negatively affected by germination, as germination may signal the presence of a seed to foraging rodents. There was some indication of a positive effect of tree density on seed survival between the two plots, whereas differences in rodent abundance appear to have no effect on seed survival. Seed size and microsite characteristics had no significant effect on buried seed survival, likely due to the greater proportional effects of other factors and the longevity of A. mexicanum seeds. The results of this study were used to generate a hypothetical causal network showing how comparatively low recovery of buried seeds by ignorant foragers – combined with processes determining the removal of scatter hoarding foragers from their scattered seed caches – may affect seedling recruitment in A. mexicanum.  相似文献   

14.
Tropical tree species diversity: a test of the Janzen-Connell model   总被引:1,自引:0,他引:1  
T. V. Burkey 《Oecologia》1994,97(4):533-540
To test the premises and predictions of the Janzen-Connell model (Janzen's spacing mechanism), seeds of the rainforest canopy tree, Brosimum alicastrum, were placed at different distances from the parent tree and their removal observed over 3 weeks. The number and density of naturally occurring seeds at different distances from the parent tree were also estimated. Predation was not greater near the parent tree, except on the very small spatial scale: the proportion of experimental seeds removed was greater 1 m from the trunk than it was 5–25 m from the trunk. Predation was negatively correlated with seed density, not positively as the Janzen-Connell model assumes-presumably due to predator satiation. The density of seeds after predation peaked 5 m from the tree trunk, but this is well within the crown radius of the parent tree. There is a peak in the number of potential recruits at a distance of 10 m from the parent tree, due to the peaked initial distribution of seeds. This peak is caused by the interaction between the seed density curve and the increasing area of an annulus around the parent tree at increasing distances, not by the product of the density curve and the predation curve. However, it is important to realize that it is not the presence of a peak in recruitment away from the parent that is essential to maintaining tropical tree species diversity, but frequency-dependent recruitment induced by poor recruitment near conspecifics. Predator satiation seems to be an important factor in the survival of B. alicastrum seeds, possibly at several spatial scales. The number of seeds produced by the tree is negatively correlated with the loss to predators, and trees that have a fruiting conspecific nearby also suffer lower levels of predation. Seed predation increases as one moves from the forest edge into the interior, creating an edge effect that may have long-term effects on the forest composition and tree species diversity. More studies are needed, for other species, other localities, and larger spatial and temporal scales, on both the Janzen-Connell mechanism and this edge effect.  相似文献   

15.
Understanding community dynamics during early life stages of trees is critical for the prediction of future species composition. In Mediterranean forests drought is a major constraint for regeneration, but likely not the only factor determining the observed spatial patterns. We carried out a sowing experiment aimed at identifying main filters during seed-seedling transition. Specifically, we studied seed fate (predation, fungi infection, emergence) and subsequent seedling performance (mortality during the first summer and overall recruitment after 2 years) of four co-occurring Mediterranean tree species (Quercus ilex, Quercus faginea, Juniperus thurifera, Pinus nigra). We related these processes to the dominant species composition, microhabitat heterogeneity, herb cover and seed mass. The identity of the dominant species in the forest canopy was more important for recruitment than the forest canopy being dominated by conspecific vs. heterospecific species. The patterns we found suggest that biotic interactions such as facilitation (lower mortality under the canopies) and herb competition (during emergence of J. thurifera) are relevant during recruitment. Moreover, our results pointed to ontogenetic conflicts regarding the seed mass of Q. faginea and to density-dependent seed mortality for Q. ilex, rarely described in Mediterranean ecosystems. We propose that our study species experience population growth in forests dominated by heterospecifics where the recruitment success depends on habitat heterogeneity and on moderated biotic and abiotic stresses created by each species. Our results reveal patterns and mechanisms involved in recruitment constraints that add complexity to the well-known drought-related processes in Mediterranean ecosystems.  相似文献   

16.
We used a highly replicated study to examine vegetation characteristics between patches of intervened forest, abandoned agroforestry systems with coffee and actively managed agroforestry systems with coffee in a tropical landscape. In all habitats, plant structural characteristics, individual abundance, species richness and composition were recorded for the three plant size classes: adult trees, saplings and seedlings. Furthermore, bird species richness and composition, and seeds dispersed by birds were recorded. Tree abundance was higher in forest habitats while saplings and seedlings were more abundant in abandoned coffee sites. Although species richness of adult trees was similar in the three habitats, species richness of saplings and seedlings was much higher in forest and abandoned coffee than in managed coffee sites. However, in spite of their relatively low species richness, managed coffee sites are an important refuge for tree species common to the almost disappeared mature forest in the area. Floristic similarity for adult trees was relatively low between land use types, but clearly higher for seedlings, indicating homogenizing processes at the landscape level. More than half of the saplings and seedling were not represented by adults in the canopy layer, suggesting the importance of seed dispersal by birds between habitats. Our results show that each of the studied ecosystems plays a unique and complementary role as seed source and as habitat for tree recovery and tree diversity.  相似文献   

17.
Large animal species, which provide important ecological functions such as dispersal of seeds or top–down control of seed predators, are very vulnerable in fragmented forests, being unable to survive in small fragments, and facing increasing hunting pressure. The loss of large animals affects two main ecological processes crucial for the tree reproductive cycle: seed dispersal of large seeds (e.g. provided by tapirs) and control of seed predator population (e.g. provided by large cats). The changes in both processes are expected to increase seed mortality since seeds are not dispersed away from conspecifics (causing increased pre‐dispersal mortality due to negative density dependent effects) and/or face increased predation after a dispersal event (post‐dispersal mortality). Although an extensive body of empirical knowledge exists on seed predation, the link between seed loss and adult tree community composition and structure is not well established, as well as the temporal scale seed changes affect adults. Using an individual‐based forest model (FORMIND), we evaluate the long‐term consequences of increased pre and post‐dispersal seed mortality on the future forest biomass retention of a Brazilian northeastern Atlantic forest. Our results show that forest biomass is significantly affected after 80–93% pre‐dispersal loss of large seeds, or post‐dispersal predation densities of 20–25 predators per parent tree. Large‐seeded tree species are at increased risk of local extinction causing up to 26.2% loss of forest biomass when both pre and post‐dispersal processes are combined. However, these changes can last up to 100 years after the occurrence of defaunation. In summary we conclude that large animal loss has the potential to reduce future forest biomass and tree species‐richness by impacting seed survival, and should be considered in the planning of biodiversity friendly landscapes as well as in calculations of the global carbon budget.  相似文献   

18.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

19.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

20.
House mice Mus musculus and other introduced rodents represent a novel source of predation on tree seeds in New Zealand forests. In the northern temperate forests where these rodents are native, spatial and temporal variation in tree seed production can result in dramatic fluctuations in the distribution and abundance of seed predators, with subsequent feedbacks on the distribution and abundance of seedlings. We use neighbourhood models to examine variation in rodent predation on seeds of 4 tree species of the temperate rainforests of New Zealand as a function of 1) spatial variation in local canopy composition and 2) spatial and temporal variation in mouse activity. We placed seeds throughout mapped stands of mixed forests in alluvial valley bottoms and on elevated marine terraces in the Waitutu Forest, South Island. The risk of predation on seeds of 2 dominant canopy trees – rimu Dacrydium cupressinum and mountain beech Nothofagus solandri var . cliffortioides – peaked in neighbourhoods dominated by those species and by silver beech N. menziesii , particularly in a year of plentiful seed rain from these species. The risk of predation on rimu and beech seed was also related to measures of local mouse activity. These relationships suggest that the highest local abundance of mice was concentrated in rimu and beech neighbourhoods because of the food provided by seed rain from those trees. Predation on seed of miro Prumnopitys ferruginea , which is eaten by rats but not mice, was low in rimu neighbourhoods and where mouse activity was high. These patterns may reflect spatial segregation in the activity of rats versus mice within stands. Our results suggest that the spatial distribution of canopy trees translates into predictable patterns of variation in mouse activity and seed predation. Heterogeneity in rodent activity and seed predation within stands may have important implications for tree population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号