首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Using a genetic screen we have identified two chromosomal genes, cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pco operon of E. coli; CopR and CopS from the cop operon, which provides copper resistance to Pseudomonas syringae; and SilR and SilS from the sil locus, which provides silver ion resistance to Salmonella enterica serovar Typhimurium. The genes cusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC (ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. The cus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusC and additional downstream genes are homologous to known metal ion antiporters.  相似文献   

3.
4.
5.
6.
7.
8.
In this study, we designed and applied molecular biosensors for heavy metals, zinc and copper, for use in bioremediation strategies. Bacteria utilize two component systems to sense changes in the environment by multiple signal components including heavy metals and control gene expression in response to changes in signal molecules. zraP and cusC promoters were selected from a genetic circuit of the ZraSR and CusSR two-component system and were fused to a dual-labeling reporter protein as an interactive biological component for zinc and copper to generate a signal from the constructed biosensor. The biosensor efficiently senses zinc and copper with a calculated detection limit of 16 μM and 26 μM, respectively, and was shown to be a sensitive and effective heavy metal monitoring bacterial system. To extend the application of the bacterial biosensor, we assembled a bioadsorption system that can trigger bacteria to sense and adsorb 13 ± 0.3 mg/L of zinc and 11.4 ± 0.42 mg/L of copper per gram of dry cell weight with induction at a concentration of 100 mg/L of the respective metal ion.  相似文献   

9.
An inducible reporter gene system for Chinese Hamster Ovary (CHO-DHFR(-)) cells has been developed and characterized with respect to its dynamic properties. The reporter gene system consists of the human c-fos promoter and variants of the green fluorescence protein (GFP), either EGFP with enhanced fluorescence or its destabilized form d2EGFP. The expression of wild-type EGFP or its destabilized form was studied in CHO-DHFR(-) cells in response to serum addition or deprivation. It was shown that serum-induced c-fos promoter mediated EGFP expression was considerably higher than expression from the human CMV promoter, a strong, constitutive promoter preferentially used for high-level expression in CHO cells. However, EGFP was less suitable for studying expression dynamics than d2EGFP due to the protein's long half-life in mammalian cells. The use of d2EGFP resulted in a significant improvement in the dynamic characteristics of the biomarker, particularly when the recombinant cells were selected for high-level GFP expression by subcloning or fluorescence activated cell/sorting (FACS). GFP expression in different subclones and cell populations sorted by FACS was characterized with respect to its dynamic responses in the presence or absence of serum in the culture medium. Significant differences in the GFP expression dynamics were observed for the isolated cell populations. The experimental results indicate that cells with high-level GFP expression also have a faster dynamic response and are thus, desirable for practical application of the reporter gene system e.g. in toxicity monitoring.  相似文献   

10.
Heme is an essential cofactor and alternative iron source for almost all bacterial species but may cause severe toxicity upon elevated levels and consequently, regulatory mechanisms coordinating heme homeostasis represent an important fitness trait. A remarkable scenario is found in several corynebacterial species, e.g. Corynebacterium glutamicum and Corynebacterium diphtheriae, which dedicate two paralogous, heme‐responsive two‐component systems, HrrSA and ChrSA, to cope with the Janus nature of heme. Here, we combined experimental reporter profiling with a quantitative mathematical model to understand how this particular regulatory network architecture shapes the dynamic response to heme. Our data revealed an instantaneous activation of the detoxification response (hrtBA) upon stimulus perception and we found that kinase activity of both kinases contribute to this fast onset. Furthermore, instant deactivation of the PhrtBA promoter is achieved by a strong ChrS phosphatase activity upon stimulus decline. While the activation of detoxification response is uncoupled from further factors, heme utilization is additionally governed by the global iron regulator DtxR integrating information on iron availability into the regulatory network. Altogether, our data provide comprehensive insights how TCS cross‐regulation and network hierarchy shape the temporal dynamics of detoxification (hrtBA) and utilization (hmuO) as part of a global homeostatic response to heme.  相似文献   

11.
12.
Febrile convulsion is the most common disorder in childhood with good prognosis. There are different hypotheses about neurotransmitters and trace element changes in biological fluids which can have a role in pathogenesis of febrile convulsion. In this study, serum selenium, zinc, and copper were measured by atomic absorption spectrometry in the children with febrile convulsion (n?=?30) and in the control group (n?=?30). The age and sex of the subjects were registered. Selenium and zinc were found to be significantly lower in febrile convulsion cases than in the control group (p?<?0.0001 and p?<?0.0001, respectively). There was no significant difference in the value of copper between the two groups (p?=?0.16). While selenium and zinc levels were 44.92?±?10.93 μg/l and 66.13?±?18.97 μg/dl in febrile convulsion, they were found to be 62.98?±?9.80 μg/l and 107.87?±?28.79 μg/dl in healthy children. Meanwhile, copper levels were 146.40?±?23.51 μg/dl in the patients and 137.63?±?24.19 μg/dl in the control group, respectively. This study shows that selenium and zinc play an important role in the pathogenesis of febrile convulsion.  相似文献   

13.
In this study, two-component system (TCS) gene profile and metabolic network gene profile based phylogenetic trees were constructed and compared to each other to evaluate the evolutionary relationship between the bacterial sensing system and metabolism. The gene profiles of the these systems suggested that bacteria employed different evolutionary strategies to optimize the two-component system and metabolic network. In addition, comparative analysis revealed that the TCS based tree showed better family grouping than the metabolic network based tree, which indicated that the TCS and metabolic network have been modified via self-evolution and recruitment methods, respectively.  相似文献   

14.
UV-mediated mutagenesis generated a high glucoamylase-producing mutant of Aspergillus oryzae exhibiting strong melanization in solid-state culture. Expression of the glucoamylase-encoding gene (glaB), which is specifically expressed in solid-state culture, and the tyrosinase-encoding gene (melO), was analyzed using an E. coli beta-glucuronidase (GUS) reporter assay to investigate this phenomenon. Although no common regulation was found for melO and glaB expression, the former was greatly enhanced in submerged culture. Interestingly, the melO promoter was about four times stronger for GUS production than the powerful promoters amyB, glaA, and modified agdA, previously isolated for industrial heterologous gene expression in A. oryzae. These findings indicated that the melO promoter would be suitable for hyper-production of heterologous protein in Aspergillus. The glaB-type glucoamylase selected as the target protein was produced in a submerged culture of A. oryzae under the control of the melO promoter. The maximum yield was 0.8 g/l broth, and the total extracellular protein purity was 99%. Repeated batch culture, to improve productivity, gave a maximum yield of 3.3 g/l broth. The importance of this work is in the establishment of a both high-level and high-purity protein overproduction system in A. oryzae by use of the melO promoter.  相似文献   

15.
目的:检测人宫颈癌HeLa细胞中TSLC1基因甲基化的状况,研究在人宫颈癌HeLa细胞凋亡过程中TSLC1基因甲基化的变化情况,探讨肿瘤细胞凋亡与抑癌基因甲基化的相关性,并进一步证实天花粉蛋白(TCS)去甲基化作用是否存在普遍性,以促进天花粉蛋白的临床应用。方法:应用甲基化特异性PCR(MSP)法检测人宫颈癌HeLa细胞及其凋亡过程中TSLC1基因甲基化的状况;采用实时定量RT-PCR技术检测TCS处理前、后HeLa细胞TSLC1基因表达的变化。结果:肿瘤抑制基因TSLC1在人宫颈癌HeLa细胞中呈高度甲基化状态,经40μg/mL TCS处理48h后,TSLC1基因甲基化程度明显降低;RT-PCR检测结果显示,TCS处理组HeLa细胞中TSLC1 mRNA的表达量高于未处理组,提示TSLC1基因启动子区CpG岛甲基化是导致其低表达的重要机制。结论:肿瘤抑制基因TSLC1启动子甲基化在人宫颈癌癌变过程中可能是一种重要的分子调控机制;人宫颈癌HeLa细胞凋亡与抑癌基因的去甲基化之间可能存在某些密切的相关性;TCS对肿瘤抑制基因TSLC1有一定的去甲基化作用。  相似文献   

16.
17.
18.
A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.  相似文献   

19.
20.
Different bacteria-derived systems for regulatable gene expression have been developed for the use in mammalian cells and some were also successfully adopted for in vivo use in vertebrate model organisms. However, certain limitations apply to most of these systems, including leakiness of transgene expression, inefficient transgene silencing or activation, as well as limited tissue accessibility of transgene-inducers or their unfavourable pharmacokinetics. In this study, we evaluated the suitability of the lac-operon/lac-repressor (lacO/lacI) system for the regulation of the well-established Vav-gene promoter that allows inducible transgene expression in different haematopoietic lineages in mice. Using the fluorescence marker protein Venus as a reporter, we observed that the lacO/lacI system could be amended to modulate transgene-expression in haematopoietic cells. However, reporter expression was not uniform and the lacO elements introduced into the Vav-gene promoter only conferred limited repression and reversion of lacI-mediated gene silencing after administration of IPTG. Although further optimization of the system is required, the lacO-modified version of the Vav-gene promoter may be adopted as a tool where low basal gene-expression and limited transient induction of protein expression are desired, e.g. for the activation of oncogenes or transgenes that act in a dominant-negative manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号