首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lateral buds of the fern Davallia trichomanoides are releasedfrom inhibition by the removal of the main shoot apex. However,auxin is not capable of substituting for the apex in decapitatedshoots nor can auxin in shoot tips be detected by bioassay orextraction and chromatography. Expanding leaves of this speciescontain auxin, but these organs are not responsible for inhibitionof lateral bud growth. The response of lateral buds to an exogenouslyapplied cytokinin does not result in initial bud break. It isconcluded that the hormonal factors known to govern apical dominancein seed plants are not responsible for the regulation of differentialbud expansion in this fern.  相似文献   

2.
Y. Habricot  L. Sossountzov 《Protoplasma》1984,119(1-2):141-149
Summary The active terminal bud and the quiescent lateral buds and corresponding nodes inserted at different levels on the main rhizome ofMarsilea drummondii were examined with the EM afterin vivo feeding with lanthanum nitrate. These tracer experiments demonstrate that all the buds are fed by their phloem cells. In the lateral bud axis the labelling of the sieve elements apoplast indicates that a solute transfer took place in the node between xylem and phloem via xylem transfer cells. La3+ deposits are completely absent from the apical dome of inhibited buds indicating that the walls of the quiescent meristematic cells are not permeated by the tracer. The removal of the terminal bud has two effects. It rapidly (in 2 hours) allows the lanthanum to penetrate the lateral bud tip walls at a stage when no fine structural changes are discernable and to bind to the outer surface of the plasmalemma as it does in the active terminal bud. This study including inhibited buds and buds released from apical dominance support the view that changes in the state of the cell surface (cell wall and plasma membrane) may be a prerequisite for the resumption growth activity.This study was supported in part by a grant from the Centre National de la Recherche Scientifique to L.Sossountzov (AI 031275).  相似文献   

3.
Hormone Interaction in Apical Dominance in Phaseolus vulgaris L.   总被引:2,自引:0,他引:2  
Gibberellic acid (GA3), kinetin, and indole-3yl-acetic acid(IAA) were applied to roots of Phaseolus vulgaris under twodifferent light intensities and when either young or old leaveswere removed In all cases GA3, promoted stem and lateral growth,especially when light intensity was reduced. Promotion by GA3,of stem growth under reduced light was reduced if IAA and kinetinwere present; promotion of lateral growth under reduced lightwas reduced if IAA was added and eliminated if kinetin or kinetinplus IAA were added to GA3. Removal of young and mature leavesreduced main stem growth; removal of young leaves promoted,and of mature leaves reduced, lateral shoot growth. We suggestthat shoot growth and apical dominance are governed by the balanceof hormones present in elongating internodes. There may be twoways of modifying this balance; firstly by altering light, temperature,or nutrients, or by applying hormones generally to the plant.Secondly, local modifications can be made by removing apicesor young leaves, or applying hormones in lanolin to specificareas. Knowledge of both the general and local conditions maybe necessary for a complete understanding of apical dominance.  相似文献   

4.
Gibberellic acid (GA2), kinetin, and indole-3yl-acetic acid(IAA) each at four concentrations (0, 0.5, 5, and 50 µM)were applied alone and in all possible combinations to rootsof Phaseolus vulgaris L. grown under four different light regimes(7000, 14 000, 21 000, and 28 000 lx). GA3 increased growthof main stem and laterals but reduced apical dominance, especiallyin the absence of, or at low kinetin concentrations. A highlevel of kinetin lowered GA3 induced growth of main stems and,to a lesser extent, laterals. Kinetin greatly reduced apicaldominance, especially in the absence of, or at low GA3 concentrations.IAA slightly reduced growth of main stems and laterals and slightlyincreased apical dominance. Generally the magnitude of the IAAeffects were less than those of GA3 or kinetin and there wereless interaction between IAA and other factors than betweenGA3 or kinetin and other factors. Light affected growth of bothmain stem and laterals but the effect was dependent on GA3 andkinetin levels and the interactions were complex. Generallya hormone balance seems to be operative with gibberellin-promotinggrowth of main stem and laterals and cytokinins and possiblyauxins preventing excessive elongation. Differential responsesbetween main stem and lateral may be due to different localhormone concentrations and over-all responses may be temperedby light intensity.  相似文献   

5.
6.
7.
Summary A detailed comparison of Mg2+-K+ ATPase activity and cation fluxes in terminal buds, inhibited buds or buds released from apical dominance was carried out. Light microscope observations indicate intense reaction at the plasmalemma of stelar cells, pericyclic, phloem and xylem transfer cells at nodes along the main rhizome. In intact plants, with the exception of pericyclic cells, bud branches show no ATPase activity. Excision of the terminal bud results in rapid (within 5–15 minutes) stimulation of ATPase activity at nodes and all bud axes. As the subapical bud gains precedence, ATPase stimulation ceases and returns to its initial level in the older median and basal buds. Enzyme activation is kinetically correlated with K+ flux. X-ray microanalysis confirms that K+ accumulates in the stele at the node and the bud branch with the same lag period. This data increases the evidence for close association between ATP (Sossountzov et al. 1982), ATPase activity and K+ flux. The kinetics strengthen the impression that these factors may be involved very early in bud outgrowth regulation.  相似文献   

8.
9.
Sieve tube elements occur in the rhizomes and petioles of Marsileaquadrifolia. These are either thick walled with compound sieveplates in oblique end walls or thin walled with simple sieveplates in transverse end walls. Vessels are restricted to themetaxylem in the roots where the phloem contains sieve cellsonly. The sieve pores are invariably callose lined and as inother pteridophytes, excepting the Lycopsida, refractive spherulesare ubiquitous in the sieve elements of Marsilea. The luminaof the protoxylem tracheary elements in the rhizomes and petiolesare occluded by tyloses but probably remain functional in theroots. Pericycle cells backing on to the root protoxylem armspossess wall ingrowths. Transfer cells are however absent fromthe vascular tissue of the rhizomes and leaves. It is suggestedthat their presence in the root pericycle is related to theretrieval of ions from the xylem sap which may be particularlycritical in water plants. The incidence of transfer cells incryptogams appears to be far more sporadic than in angiosperms.The root endodermis of Marsilea possesses a casparian stripand abundant vacuolar tannin deposits. Plasmalemmasomes arenumerous adjacent to the pericycle transfer cells. vascular ultrastructure, Marsilea quadrifolia L, transfer cells, sieve tube elements, tyloses  相似文献   

10.
Although determinations of the ABA content of lateral buds ofPhaseolus vulgaris revealed no difference between decapitatedand intact control plants in the first 12 h following decapitation,a relative decrease in the ABA content of lateral buds of decapitatedplants was detectable 24 h following decapitation. Shoot decapitationwas also observed to result in a decrease in the ABA contentof stem tissue. The application of IAA to the stem of decapitatedplants prevented these changes and increased the ABA contentof stem tissue relative to that of intact plants. The levelsof IAA and ABA were also determined in the stem tissue fromthe nodes of intact bean plants. The possible interdependenceof these two plant hormones was further investigated by a studyof [2–14ClABA metabolism. The results are discussed inrelation to the possible role of these hormones in apical dominance. Key words: Apical dominance, Abscisic acid, Indole-3-acetic acid  相似文献   

11.
TUCKER  D. J. 《Annals of botany》1977,41(1):181-190
The rogue tomato exhibits less apical dominance than the normalplant though the degree of correlative inhibition varies considerablybetween winter- and summer-sown plants. An examination of thelevel of endogenous hormones in both rogue and normal plantsat both times of year indicates that the degree of branchingis strongly associated with the levels of auxin in the tissue.It is suggested that this hormone has an effect on apical dominanceby virtue of its role in hormone-directed transport and by itseffect on the formation of abscisic acid in the region of thelateral buds. The results are discussed in relation to currenthypotheses of the mechanism of apical dominance.  相似文献   

12.
Sperm formation was studied in the fern, Marsilea, and the cycad, Zamia, with particular emphasis on the centrioles. In Marsilea, the mature sperm possesses over 100 flagella, the basal bodies of which have the typical cylindrical structure of centrioles. Earlier observations by light microscopy suggested that these centrioles arise by fragmentation of a body known as the blepharoplast. In the youngest spermatids the blepharoplast is a hollow sphere approximately 0.8 µ in diameter. Its wall consists of closely packed immature centrioles, or procentrioles. The procentrioles are short cylinders which progressively lengthen during differentiation of the spermatid. At the same time they migrate to the surface of the cell, where each of them puts out a flagellum. A blepharoplast is found at each pole of the spindle during the last antheridial mitosis, and two blepharoplasts are found in the cytoplasm before this mitosis. Blepharoplasts are also found in the preceding cell generation, but their ultimate origin is obscure. Before the last mitosis the blepharoplasts are solid, consisting of a cluster of radially arranged tubules which bear some structural similarity to centrioles. In Zamia, similar stages are found during sperm formation, although here the number of flagella on each sperm is close to 20,000 and the blepharoplast measures about 10 µ in diameter. These observations are discussed in relation to theories of centriole replication.  相似文献   

13.
An account is given of the effects of 3-indolylacetic acid,3-indolylaceto-nitrile, and coumarin on the development of thelateral buds of intact plants, decapitated plants, and excisednodes of Marsilea Drummondii in aseptic culture. In all the plant materials used, lateral buds grew out at allphysiological concentrations of the two auxins, an observationwhich is considered to refute the hypothesis that correlativeinhibition is caused by direct inhibition by auxi. Other hypothesesand recent work on the subject are also discussed.  相似文献   

14.
15.
The Antagonism of Auxin and Kinetin in Apical Dominance   总被引:4,自引:0,他引:4  
  相似文献   

16.
Experiments with small plants of Populus tremula L. growing in solution culture indicate that polarly transported auxin is an important factor in the control of axillary bud growth. If the auxin supply from the growing apex is eliminated, the number of buds released is influenced by factors translocated in the transpiration stream from the roots. Suckers may be induced to develop from aspen roots, the age of which is six weeks or more. Removal of the growing apex and the axillary buds or stoppage of shoot growth by short day treatment were effective in inducing abundant suckering in small aspen plants. Some mature leaves had to be maintained, indicating the dependence of sucker formation on carbohydrate supply. These treatments are known to decrease auxin production in the shoots. Extraction and biological assay showed a decrease in the content of auxin in the roots as a consequence of removal of growing shoot parts. The results indicate that suckering in roots of intact aspen plants is prevented by auxin transported into the roots from growing shoot parts.  相似文献   

17.
TUCKER  D. J. 《Annals of botany》1980,45(5):555-560
The rogue tomato differs from the normal plant in that it exhibitsa lesser degree of apical dominance. Grafting techniques andmeasurements of the endogenous levels of growth substances inthe two types have been used in order to establish whether thisdifference is due to an altered hormonal balance in the roguetype. The results suggest that root-produced cytokinins play no rolein the control of apical dominance in the tomato plant, andthat lateral bud out-growth is influenced by a balance betweenapically-produced auxin, abscisic acid produced at the sitesof bud development and cytokinins synthesized within the budsthemselves. Lycopersicon esculentum L., tomato, apical dominance, abscisic acid, auxins, cytokinins, growth regulation  相似文献   

18.
Cytokinins are present in all parts of potato tubers, and areequally distributed between the apical, lateral, and internodaltissue when dormant. However, the breaking of dormancy coincidedwith a rapid increase in the free base cytokinin levels in theapical buds and the tissue adjacent to it. These high levelsof cytokinin in the apical tissue were maintained while apicaldominance was displayed. Once apical dominance was overcomethe cytokinin levels in the lateral buds and the tissue adjacentto them were similar to the levels in the apical regions. Thepresent evidence suggests that cytokinin glucosides are transportedto the meristematic regions of the tubers where they are hydrolysedto their free bases. Amounts of free bases in excess of thoserequired for growth are apparently again converted to storageforms (particularly zeatin glucoside) in the meristematic regionsof the tubers and in the sprouts.  相似文献   

19.
Decapitation of the pea plant resulted in the growth of all the lateral shoots. The initial growth of all lateral buds was somewhat similar. The differential growth rates developed later on. The pattern of growth of lateral shoots varied with the age of the plant when decapitation was performed. The basal shoots dominated when the plants were decapitated at the 2-leaf stage. At 3-leaf stage decapitation resulted in the dominance of shoot 5. Decapitation at 4-or-more-leaf stage resulted in the eventual dominance of the suhterminal lateral shoot. As a rule P-32 moved to the most actively growing part of the plant, i.e. apex in intact vegetative plant, the growing lateral shoots in a decapitated plant, the elongating subapical parts of the stem and the roots. The various metabolic sinks seemed to compete actively for this nutrient, therefore P-32 accumulation in any particular growing region of the plant was taken as an indicator of nutrient utilization potential of that part. The stem apex of an intact plant seemed to loose its dominance with the increasing age of the plant. The loss of apical dominance was almost complete during the reproductive phase of the plant, during which the upper lateral shoots initiated growth. Their growth, however, was inhibited soon because of competition with the other developing sinks, viz., the flower and the fruit. The amount of soluble carbohydrates in various parts of the pea plant followed essentially the same pattern as did P-32 accumulation. These distribution patterns were apparently correlated with the growth of the plant.  相似文献   

20.
植物的顶端优势和水分上升机理新说   总被引:1,自引:0,他引:1  
高震 《生物学杂志》1998,15(4):27-29,26
植物体有一个能量系统,由植物顶端、由植物顶端、形成层及其初生韧皮部和木质部、传递细胞等组成。这些细胞含线粒体量多质好,摘顶等刺激这些地方ATP复合酶能产生大量能量,通过胞间连丝引起连锁反应并刺激和激活激素、营养物质等而产生生命活动、项端优势等。植物细胞的原生质是一种液晶,只需极少能量便能产生很大的作用。除去顶芽,刺激线粒体能产生大量能量供给侧芽,激活侧芽激素等而使侧芽生长,由于能量作功,逐渐减少,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号