首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Survival, cumulative labeling indices, chromosomal aberrations and cell-cycle distribution by flow microfluorometry (FMF) were studied in fibroblasts from normal and three ataxia telangiectasia (AT) families after X-irradiation during density-inhibition of growth and immediate release by subculture to low density. Homozygotic AT (proband) fibroblasts were very hypersensitive to cell killing by X-irradiation (D0 = 40-45 rad). Fibroblasts from AT heterozygotes (parents) were minimally hypersensitive, with D0's (100-110 rad) slightly lower than those for normal fibroblasts (D0 = 120-140 rad). There were three different response groups for a G1 phase block induced by 400 rad of X-rays: (1) minimal or no G1 block was observed in AT homozygote cell strains; (2) 10-20% of the cells were blocked in G1 in normal cell strains; and (3) 50% or more of the cells were blocked in AT heterozygote strains. FMF profiles and cumulative labeling indices showed that homozygotic AT cells irradiated in plateau phase moved into the S-phase following subculture with no additional delay over non-irradiated controls. Homozygotic AT cells showed not only a 4-5 times higher frequency of X-ray-induced chromosomal aberrations than normal strains, but approximately 30% of these were of the chromatid-type. There were no differences in the frequency or type of X-ray-induced chromosomal aberrations between normal and heterozygotic AT cells.  相似文献   

2.
PURPOSE: Cisplatin was found to radiosensitize SW-1573 cells by inhibition of PLDR. Therefore, it was investigated whether cisplatin combined with gamma-radiation leads to an increase in the number of chromosomal aberrations or apoptotic cells compared with radiation alone. METHODS: Confluent cultures of the human lung carcinoma cell line SW-1573 were treated with 1 microM cisplatin for 1 h, 4 Gy gamma-radiation, or a combination of both. Cell survival was studied by the clonogenic assay. Aberrations were analysed by FISH in prematurely condensed chromosomes (PCC) and the induction of apoptosis by counting fragmented nuclei. RESULTS: A radiosensitizing effect of cisplatin on cell survival was observed if time for PLDR was allowed. An increased number of chromosomal fragments were observed immediately after irradiation compared with 24 h after irradiation whereas color junctions are only formed 24 h after irradiation. No increase in chromosomal aberrations was found after combined treatment, but a significantly enhanced number of fragmented nuclei were observed when confluent cultures were replated after allowing PLDR. CONCLUSION: The inhibition of PLDR by cisplatin in delayed plated SW-1573 cells did not increase chromosomal aberrations, but increased the induction of apoptosis.  相似文献   

3.
Cultured skin fibroblast cells from 6 patients with non-Hodgkin's lymphoma (NHL) and 2 clinically normal subjects were compared for cell survival and chromosomal aberration after chronic gamma-irradiation. Fibroblasts from an ataxia telangiectasia (AT) homozygote and an AT heterozygote were used as positive controls. Following irradiation, fibroblasts from all 6 NHL patients showed an increase in both cell death and chromosomal aberration (breaks and rearrangements) compared to the normal subjects. The difference in the frequency of chromosomal aberration between the normals and the NHL patients remained virtually unchanged over a period of 24-72 h post irradiation incubation of the cells. Cell cycle analysis by flow cytometry carried out in 1 normal and 1 NHL fibroblast cell strain showed that more cells representing the NHL patient were in G2/M phase compared to the normal at various times of cytogenetic analysis. While the AT homozygote appeared to be the most radiosensitive, the AT heterozygote showed a slightly higher incidence of cell death and chromosomal aberration than the normals. The cellular and chromosomal radiosensitivity of fibroblast cell lines from the NHL patients differed slightly from that of the AT heterozygote but clearly occupied an intermediate position between the AT homozygote and the normal subjects. Cells from 3 of the NHL patients showed radiation-induced specific chromosomal breaks involving chromosomes 1, 2, 6, 8, 10 and 11 which correspond to known fragile sites. Such breakpoints associated with increased radiosensitivity may be indicative of predisposition to malignancy in the patients studied.  相似文献   

4.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder. Originally thought to be a variant of ataxia telangiectasia (AT), the cellular phenotype of NBS has been described as almost indistinguishable from that of AT. Since the gene involved in NBS has been cloned and its functions studied, we sought to further characterize its cellular phenotype by examining the response of density-inhibited, confluent cultures of human diploid fibroblasts to irradiation in the G(0)/G(1) phase of the cell cycle. Both NBS and AT cells were markedly sensitive to the cytotoxic effects of radiation. NBS cells, however, were proficient in recovery from potentially lethal damage and exhibited a pronounced radiation-induced G(1)-phase arrest. Irradiated AT cells showed no potentially lethal damage and no G(1)-phase arrest. Both cell types were hypersensitive to the induction of chromosomal aberrations, whereas the distribution of aberrations in irradiated NBS cells was similar to that of normal controls, AT cells showed a high frequency of chromatid-type aberrations. TP53 and CDKN1A (also known as p21(Waf1)) expression was attenuated in irradiated NBS cells, but maximal induction occurred 2 h postirradiation, as was observed in normal controls. The similarities and differences in cellular phenotype between irradiated NBS and AT cells are discussed in terms of the functional properties of the signaling pathways downstream of AT involving the NBS1 and TP53 proteins.  相似文献   

5.
We examined X-ray induced potentially lethal damage repair (PLDR) in density inhibited plateau phase cultures of six fibroblast strains derived from patients with hereditary retinoblastoma and two patients with D-deletion retinoblastoma and compared them to three normal controls. PLD was measured in hereditary retinoblastoma (7 Gy exposure) and normal cells (7 and 9 Gy exposure) after 24 h repair time. PLD survival curves were performed at 2-9 Gy on six retinoblastoma and three normal control cell strains. Thus, PLDR was compared at equitoxic survival levels as well as after exposure to equal doses of radiation. Some retinoblastoma strains showed normal PLDR whereas others were possibly deficient. Implications of PLDR for susceptibility to radiation-induced and spontaneous tumours in hereditary retinoblastoma patients are discussed.  相似文献   

6.
The influence of confluent holding periods of 0-24 h of UV-light-induced mutagenesis has been investigated in several human cell strains including xeroderma pigmentosum complementation group A (XPA), Gardner's syndrome (GS) and normal human diploid fibroblasts (NHDF). These cells strains were chosen for the variety of their responses in cytotoxicity experiments. Confluent cultures of NHDF exposed to UV light exhibited a time-dependent increase in survival when subculture was delayed up to 24 h after irradiation. GS and XPA fibroblasts showed no such increase. In dose-response experiments, GS cells from 3 kindreds were moderately hypersensitive to cell killing by UV light whereas XPA cells were strongly hypersensitive. Confluent cultures of GS cells were slightly and XPA markedly hypermutable to 6-thioguanine resistance (6-TGR) when the cells were subcultured immediately after UV exposure. When allowed confluent holding periods of 1.5-24 h, GS, XPA and NHDF all exhibited a transient enhancement of mutagenesis such that a 5-10-fold increase in mutation frequency was observed in cells subcultured at 6-9 h after irradiation as compared to cells subcultured at 3-6 h. A decline in mutation frequency prior to the mutagenesis peak was observed in GS and normal cells but not in XPA. After 24 h of confluent holding, the mutation frequency in irradiated GS and NHDF had returned to near background levels although XPA mutation frequencies remain similar to those observed in immediately subcultured cells. A model to explain these overall results is discussed.  相似文献   

7.
Several primary and transformed human cell lines derived from cancer prone patients are employed routinely for biochemical and DNA repair studies. Since transformation leads to some chromosomal instability a cytogenetic analysis of spontaneous chromosome aberrations in fibroblast cell lines derived from patients with Fanconi anaemia (FA), ataxia telangiectasia (AT), and in lymphoblastoid cell lines derived from patients with Bloom's syndrome (BS), was undertaken. Unstable aberrations were analysed in Giemsa stained preparations and the chromosome painting technique was used for evaluating the frequencies of stable aberrations (translocations). In addition, the frequency of sister-chromatid exchanges (SCEs) was determined in differentially stained metaphases. The SV40-transformed fibroblasts from these cell lines have higher frequencies of unstable aberrations than the primary fibroblasts. In the four lymphoblastoid cell lines derived from BS patients higher frequencies of spontaneously occurring chromosomal aberrations in comparison to normal TK6wt cells were also evident. The frequency of spontaneously occurring chromosome translocations was determined with fluorescence in situ hybridisation (FISH) and using DNA libraries specific for chromosomes 1, 2, 3, 4, 7, 8, 11, 14, 19, 20 and X. The translocation levels were found to be elevated for primary FA fibroblasts and lymphoblastoid cells derived from BS patients in comparison with control cell lines, hetero- and homozygote BS cell lines not differing in this respect. The SV40-transformed cell lines showed very high frequencies of translocations independent of their origin and almost every cell contained at least one translocation. In addition, clonal translocations were found in transformed control TK6wt and AT cell lines for chromosomes 20 and 14, respectively. The spontaneous frequencies of SCEs were similar in transformed fibroblasts derived from normal individuals and AT patients, whereas in SV40-transformed FA cells these were higher (4-fold). Among cell lines derived from BS patients, heterozygote lines behaved like control, whereas in homozygote cell lines very high frequencies of SCEs (about 12-fold) were evident.  相似文献   

8.
Effect of dose rate on the survival of irradiated human skin fibroblasts.   总被引:2,自引:0,他引:2  
The survival of cells in density-inhibited, confluent cultures maintained at 37 degrees C was examined following exposure to 137Cs gamma rays at low dose rates (0.023 or 0.153 Gy/h) or to 60Co gamma rays at a single high dose rate (0.70-0.75 Gy/min). Cells from an ataxia telangiectasia (AT) homozygote showed no dose-rate effect, whereas a three- to fivefold increase in D0 was observed for all other cell strains exposed at low dose rates. The magnitude of the dose-rate effect did not differ significantly among cells from persons with hereditary retinoblastoma, basal cell nevus syndrome, or AT-heterozygote compared with normal cell strains, and was not related to the size of the shoulder (extrapolation number) of the survival curve. Furthermore, no differences in the capacity for the repair of potentially lethal damage during confluent holding were observed among these latter cell strains.  相似文献   

9.
Summary X-ray induced chromosomal aberrations in peripheral blood lymphocytes as well as in skin fibroblasts from ataxia telangiectasia patients, and from normal individuals were studied. At all stages of cell cycles—namely G0, G1, and G2, more aberrations were induced in AT cells than in normal cells. In addition, AT cells were sensitive to induction of chromosomal aberrations by tritium beta rays from incorporated radioactive thymidine. Possible reasons for the increased sensitivity of AT cells for induction of chromosomal aberrations by ionizing radiations are discussed.  相似文献   

10.
We tested the hypothesis that manganese superoxide dismutase (MnSOD), an antioxidant enzyme, regulates the proliferative potential of confluent human fibroblasts. Normal human skin (AG01522) and lung (WI38, CCL-75) fibroblasts kept in confluence (>95% G(0)/G(1)) showed a significant decrease in their capacity to re-enter the proliferation cycle after 40-60 days. The inhibition of re-entry was accompanied with the age-dependent increase of p16 protein levels in the confluent culture. Adenoviral mediated overexpression of MnSOD during confluent growth suppressed p16, enhanced p21 protein accumulation, and protected fibroblasts against the loss of proliferation potential. Increases in p21 protein levels in MnSOD overexpressing confluent fibroblasts were independent of p53 protein levels. p53 protein levels did not change in control, replication-defective adenovirus containing an insertless vector (AdBgl II), or AdMnSOD-infected confluent cells cultured for 20 and 60 days. In addition, MnSOD-induced protection of the proliferation capacity of confluent fibroblasts was independent of their telomerase activity. However, telomerase-transformed fibroblasts showed increased MnSOD expression in confluent growth, maintaining their capacity to re-enter the proliferation cycle. Although inactivation of the retinoblastoma protein in cells subcultured from the 60-day confluent control, AdBgl II-, and AdMnSOD-infected fibroblasts was identical, only MnSOD-overexpressing cells showed a higher percentage of S-phase. These results support the hypothesis that a redox-sensitive checkpoint regulated the progression of fibroblasts from G(0)/G(1) to S-phase.  相似文献   

11.
In this investigation peripheral blood lymphocytes from 3 Fanconi's anemia (FA) patients, 2 FA heterozygotes and 4 normal subjects were treated with caffeine and/or adenosine, and/or niacinamide during G2 prophase. Caffeine dramatically increased breakage levels in homozygote and heterozygote cells. Niacinamide and adenosine decreased the amount of chromosomal aberrations detected in FA homozygote and heterozygote lymphocytes treated and untreated with caffeine during G2 prophase. Caffeine sensitivity of heterozygote lymphocytes is proposed as a new clinical test to explore heterozygosis in individuals of FA families.  相似文献   

12.
The Nijmegen Breakage Syndrome (NBS) is a new chromosomal instability disorder different from ataxia telangiectasia (AT) and other chromosome-breakage syndromes. Cells from an NBS patient appeared hypersensitive to X-irradiation. X-rays induced significantly more chromosomal damage in NBS lymphocytes and fibroblasts than in normal cells. The difference was most pronounced after irradiation in G2. Further, NBS fibroblasts were more readily killed by X-rays than normal fibroblasts. In addition, the DNA synthesis in NBS cells was more resistant to X-rays and bleomycin than that in normal cells. The reaction of NBS cells to X-rays and bleomycin was similar to that of cells from patients with ataxia telangiectasia. Our results indicate that NBS and AT, which also have similar chromosomal characteristics, must be closely related.  相似文献   

13.
G2 chromosomal radiosensitivity in Fanconi's anemia   总被引:6,自引:0,他引:6  
Both the peripheral lymphocytes from 4 patients affected with the inherited disease Fanconi's anemia (FA), and tissue-culture fibroblasts from skin biopsies from 3 patients similarly affected were found to be about twice as sensitive to the induction of chromatid-type chromosomal aberrations by X-rays administratered in the G2 phase of the cell cycle as cells from normal controls. Using tritiated thymidine labelling of peripheral lymphocytes and of cultured fibroblasts, it was determined that 3 affected patients and 3 normal controls all had similar percent labeled mitoses (PLM) curves, so the increased induced aberration yields seen in the FA cells do not appear to be simply a consequences of a longer than normal G2 phase of the cell cycle.  相似文献   

14.
Ionizing radiation sensitive, mutant human lymphoblastoid cell lines derived from patients with Huntington's disease (HD), or ataxia telangiectasia (AT) both showed cross sensitivity to bleomycin, as assayed by reduced cell viability and increased frequency of chromosome aberrations compared to normal controls. In contrast to AT cells which failed to show inhibition of DNA synthesis after exposure to ionizing radiation, or bleomycin treatment, the sensitive cells from HD patients had depressed rates of DNA synthesis after damage with these agents, similar to that seen in normal cells. In terms of progression through the cell cycle bleomycin damaged AT cells moved from G1 into S and from S to G2 + M at almost the same rate as untreated cells. Bleomycin treated HD cells showed a large proportion of cells blocked in G1, cells were slowed down in S, the rate of entry to G2 + M was reduced and only 5% of cycling cells reached G2. Progress through the cell cycle in normal cells exposed to bleomycin showed a partial block in G1 and the rate of entry to G2 + M was reduced. These differences in response of normal, AT and HD cells to ionizing radiation and bleomycin treatment indicates that the defect underlying the sensitivity is different in HD cells from that in AT cells.  相似文献   

15.
Radiation cell survival data were obtained in vitro for three cell lines isolated from human tumours traditionally considered to be radioresistant--two melanomas and one osteosarcoma--as well as from a diploid skin fibroblast cell line. One melanoma cell line was much more radioresistant than the other, while the osteosarcoma and fibroblast cell lines were more radiosensitive than either. For cells growing exponentially, little potentially lethal damage repair (PLDR) could be demonstrated by comparing survival data for cells in which subculture was delayed by 6 h with those sub-cultured immediately after treatment. For the malignant cells in plateau phase, which in these cells might be better termed 'slowed growth phase', since an appreciable fraction of the cells are still cycling, a small amount of PLDR was observed, but not as much as reported by other investigators in the literature. The normal fibroblasts, which achieved a truer plateau phase in terms of noncycling cells, showed a significantly larger amount of PLDR than the tumour cells.  相似文献   

16.
Y Ejima  M S Sasaki 《Mutation research》1986,159(1-2):117-123
The effect of cytosine arabinoside (ara-C) on the frequency of X-ray- or UV-induced chromosome aberrations was studied in cultured skin fibroblasts derived from 2 normal persons, 4 ataxia telangiectasia (AT) patients and 2 obligate AT heterozygotes. Density-inhibited cells were irradiated with X-rays or UV, post-treated with ara-C, and chromosomes in the first post-irradiation mitoses were examined. UV, a poor inducer of chromosome-type aberrations in G1, caused chromosome-type aberrations (dicentrics and rings) when coupled with ara-C both in normal and AT cells, but to a much greater extent in AT cells. In AT cells, an elevated induction of both terminal deletions and chromatid aberrations was also observed by the application of UV and ara-C, and unexpectedly, UV alone induced a considerable frequency of both types of aberrations. The enhancing effect of ara-C on X-irradiated cells was less pronounced than on UV-irradiated cells. The responses of AT heterozygotes were virtually the same as those of normal cells. These findings suggest that ara-C can convert the UV-induced DNA damage into the type that has a potential to induce dicentrics and rings in G1 as well as to elicit a hypersensitive response of AT cells.  相似文献   

17.
Lymphocytes from two sisters with Fanconi's anemia (FA) were studied for cell cycle kinetics, sister chromatid exchanges (SCEs), and chromosomal aberrations when they had undergone one, two, or three or more divisions in mitomycin C (MMC)-treated cultures. Lymphocytes from the parents, another sister of the probands, and a healthy unrelated adult were examined as controls. Analyses of cell cycle kinetics by the sister chromatid differential staining method revealed that the relative frequency of metaphase cells at their third or subsequent divisions was much smaller in untreated FA cultures than in normal cultures fixed at 96 h after phytohemagglutinin stimulation. These data indicate that FA cells proliferate much more slowly than normal cells. MMC treatments of FA and normal cells led to a clearly dose-related delay in cell turnover times, the duration of delay being much longer in FA than in normal cells. FA cells had about 1.4 times higher frequencies of SCEs than normal cells in both MMC-treated and untreated cultures. FA cells also showed several times higher frequencies of chromosomal aberrations than normal cells, and the frequency of chromosomal aberrations decreased through subsequent mitoses by approximately 60% in both FA and normal cells.  相似文献   

18.
Radioautographic examination of skin fibroblasts grown in tissue culture from normal donors revealed heavy labeling of almost all cells following incubation with tritiated hypoxanthine. Cells from patients with Lesch-Nyhan's disease, lacking inosinate pyrophosphorylase, had only 10 grains or less per cell. When normal and abnormal cells were mixed prior to culture, there was a progressive increase, with culture time, in the percentage of heavily labeled cells so that by 96 hr, when the cells were confluent, over 95% of the cells were heavily labeled. Reduction of cell density by subculture produced a reversion to original values. Cultures from three obligatory heterozygotes revealed the expected mixed population of cells. This appears to be a practical approach to the identification of the heterozygote.Aided by USPHS CA08748 and GM15508, and the Health Research Council of the City of New York.  相似文献   

19.
We analyzed the phenotype of cells derived from SCID patients with different mutations in the Artemis gene. Using clonogenic survival assay an increased sensitivity was found to X-rays (2-3-fold) and bleomycin (2-fold), as well as to etoposide, camptothecin and methylmethane sulphonate (up to 1.5-fold). In contrast, we did not find increased sensitivity to cross-linking agents mitomycin C and cis-platinum. The kinetics of DSB repair assessed by pulsed-field gel electrophoresis and gammaH2AX foci formation after ionizing irradiation, indicate that 15-20% of DSB are not repaired in Artemis-deficient cells. In order to get a better understanding of the repair defect in Artemis-deficient cells, we studied chromosomal damage at different stages of the cell cycle. In contrast to AT cells, Artemis-deficient cells appear to have a normal G(1)/S-block that resulted in a similar frequency of dicentrics and translocations, however, frequency of acentrics fragments was found to be 2-4-fold higher compared to normal fibroblasts. Irradiation in G(2) resulted in a higher frequency of chromatid-type aberrations (1.5-3-fold) than in normal cells, indicating that a fraction of DSB requires Artemis for proper repair. Our data are consistent with a function of Artemis protein in processing of a subset of complex DSB, without G(1) cell cycle checkpoint defects. This type of DSB can be induced in high proportion and persist through S-phase and in part might be responsible for the formation of chromatid-type exchanges in G(1)-irradiated Artemis-deficient cells. Among different human radiosensitive fibroblasts studied for endogenous (in untreated samples) as well as X-ray-induced DNA damage, the ranking order on the basis of higher incidence of spontaneously occurring chromosomal alterations and induced ones was: ligase 4> or =AT>Artemis. This observation implicates that in human fibroblasts following exposure to ionizing radiation a lower risk might be created when cells are devoid of endogenous damage.  相似文献   

20.
DNA topoisomerase II is required in the cell cycle to decatenate intertwined daughter chromatids prior to mitosis. To study the mechanisms that cells use to accomplish timely chromatid decatenation, the activity of a catenation-responsive checkpoint was monitored in human skin fibroblasts with inherited or acquired defects in the DNA damage G2 checkpoint. G2 delay was quantified shortly after a brief incubation with ICRF-193, which blocks the ability of topoisomerase II to decatenate chromatids, or treatment with ionizing radiation (IR), which damages DNA. Both treatments induced G2 delay in normal human fibroblasts. Ataxia telangiectasia fibroblasts with defective G2 checkpoint response to IR displayed normal G2 delay after treatment with ICRF-193, demonstrating that ATM kinase was not required for signaling when chromatid decatenation was blocked. The G2 delay induced by ICRF-193 was reversed by caffeine, indicating that active checkpoint signaling was involved. ICRF-193-induced G2 delay also was independent of p53 function, being evident in cells expressing HPV16E6 to inactivate p53. However, as fibroblasts expressing HPV16E6 aged in culture, they lost the ability to delay entry to mitosis, both after DNA damage and when decatenation was blocked. This age-related loss of G2 delay in response to ICRF-193 and IR in E6-expressing cells was blocked by induction of telomerase. Expression of telomerase also prevented chromosomal destabilization in aging E6-expressing cells. These observations lead to a new model of genetic instability, in which attenuation of G2 decatenatory checkpoint function permits cells to enter mitosis with insufficiently decatenated chromatids, leading to aneuploidy and polyploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号