首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study the tidal transport of macrolitter between the mangrove forest in Gazi bay (Kenya) and the adjacent seagrass meadows in the bay was investigated, by deploying large standing nets, which extended over the entire height of the water column, in the transition zone between both ecosystems. In addition, the presence of macrolitter on the floor ofRhizophora mucronata andCeriops tagal stands was studied. The macromaterial (>2 mm) that was collected with the nets consisted of mangrove material (26%, mostly leaf material), seagrass leaves (60%) and macroalgae (14%). Transport was bidirectional, indicating shuttle movements of the litter, driven by the opposite flow direction of flood and ebb tides. Litter from the mangrove species consisted mainly of leaves from species occurring at the outer zone of the forest,i.e., Rhizophora mucronata andSonneratia alba. This finding suggests that the complex spatial structure of the forest hampers outflow of macrolitter from the more inner parts. Consequently, this material remains trapped within the forest. The dominant presence of seagrass litter in the macromaterial transported with the tidal water, and the conspicuous and persistent presence of seagrass litter in the low lying, peripheralR. mucronata plots (but not in the more elevatedC. tagal plots) suggest that the mangrove forest of Gazi bay is the recipient of carbon and nutrients from the seagrass system. It is hypothesized that the element cycling of the inner parts of the mangrove forest proceeds as that of a rather closed system, whereas element cycling in the outer parts has conspicuous reciprocal connections with the adjacent seagrass meadows.  相似文献   

2.
Mangroves are intertidal ecosystems that are particularly vulnerable to climate change. At the low tidal limits of their range, they face swamping by rising sea levels; at the high tidal limits, they face increasing stress from desiccation and high salinity. Facilitation theory may help guide mangrove management and restoration in the face of these threats by suggesting how and when positive intra- and interspecific effects may occur: such effects are predicted in stressed environments such as the intertidal, but have yet to be shown among mangroves. Here, we report the results of a series of experiments at low and high tidal sites examining the effects of mangrove density and species mix on seedling survival and recruitment, and on the ability of mangroves to trap sediment and cause surface elevation change. Increasing density significantly increased the survival of seedlings of two different species at both high and low tidal sites, and enhanced sediment accretion and elevation at the low tidal site. Including Avicennia marina in species mixes enhanced total biomass at a degraded high tidal site. Increasing biomass led to changed microenvironments that allowed the recruitment and survival of different mangrove species, particularly Ceriops tagal.  相似文献   

3.
Measurements were carried out of the gas exchange properties (namely, photosynthesis, stomatal conductance and transpiration rates), water use efficiency and water relations of two mangrove species, Rhizophora mucronata and Ceriops tagal at Gazi Bay, Kenya. Rhizophora mucronata had significantly higher photosynthetic rates than C. tagal. Internal CO2 concentrations were higher during the wet season than the dry season in both species. Gas exchange properties were correlated positively with photon flux density in both species. Leaf water potentials were highest during the morning and lowest at midday and were also highest in the lower canopy leaves in both species. The two mangrove species had conservative water use. Management potential for the East African mangroves based on the results of this study is suggested.  相似文献   

4.
Salinity tolerance in some mangrove species from Pakistan   总被引:1,自引:0,他引:1  
Growth, ionic and water relations of three mangrove species viz. Avicennia marina, Ceriops tagal and Rhizophora mucronata werestudied in different seawater concentrations (0, 25, 50, 75 and 100%).All mangrove species showed optimal growth at 50% seawater. Relativelymore biomass was accumulated by R. mucronata while C. tagalhad the tallest individuals. Tissue water potential became more negativewith the increase in salinity and stomatal conductance was decreased in allplants. Higher stomatal conductance was noted in R. mucronata,followed by A. marina and C. tagal. Sodium and chloride ionsincreased with the increase in salinity and this accumulation was muchhigher in A. marina.  相似文献   

5.
In the present study, nectar and pollen sources for honeybee (Apls cerana cerana Fabr.) were studied in Qlnglan mangrove area, Hainan Island, China, based on microscopic analysis of honey and pollen load (corblcular and gut contents) from honeybees collected In October and November 2004. Qualitative and quantitative melittopalynologlcal analysis of the natural honey sample showed that the honey is of unlfloral type with Mimosa pudlca L. (Mlmosaceae) as the predominant (89.14%) source of nectar and pollen for A. cerana cerana In October. Members of Araceae are an Important minor (3%-15%) pollen type, whereas those of Arecaceae are a minor (〈3%) pollen type. Pollen grains of Nypa fruticans Wurmb., Rhlzophora spp., Excoecarla agallocha L., Lumnitzera spp., Brugulera spp., Kandella candel Druce, and Ceriops tagal (Perr.) C. B. Rob. are among the notable mangrove texa growing In Qinglan mangrove area recorded as minor taxa In the honey. The absolute pollen count (I.e. the number of pollen grains/10 g honey sample) suggests that the honey belongs to Group V (〉1 000 000). Pollen analysis from the corblcular and gut contents of A. cerana cerana revealed the highest representation (95.60%) of members of Sonneratia spp. (Sonneratlaceae), followed by Bruguiera spp. (Rhizophoraceae), Euphorblaceae, Poaceae, Fabaceae, Arecaceae, Araceae, Anacardlaceae, and Rublaceae. Of these plants, those belonging to Sonneratla plants are the most Important nectar and pollen sources for A. cerana cerana and are frequently foraged and pollinated by these bees in November.  相似文献   

6.
After 12 and 18 months of daily wastewater discharge into mangrove plots in Mayotte Island, SW Indian Ocean, leaf pigment content, photosynthesis rate and growth of Rhizophora mucronata and Ceriops tagal mangrove trees were evaluated and compared with similar individuals from control plots. Chlorophyll and carotenoid contents, measured using an HPLC analyser, were significantly higher in leaves of mangrove trees receiving wastewater discharges. Photosynthesis and transpiration rates, analysed using an LCi portable system, increased significantly for mangrove trees in impacted plots. Measurements of leaf areas, young branch length and propagule length showed significant increases in plots receiving wastewater. These results suggest a beneficial effect of domestic wastewater on R. mucronata and C. tagal mangrove tree functioning. Analyses and observations on mangrove ecosystems as a whole - taking into account water and sediment compartments, crab populations and nitrogen and phosphorus cycles - are nevertheless necessary for evaluation of bioremediation capacities of mangrove ecosystems.  相似文献   

7.
Knowledge of the amount and patterns of genetic variation within and among populations of mangrove trees is essential for devising optimum genetic management strategies for their conservation and sustainable utilization. Ceriops tagal is a widespread viviparous mangrove. Genetic diversity in the species was examined with inter-simple sequence repeat (ISSR). Nine natural populations were collected from Thailand and China. The estimates of genetic variation were extremely low (HT = 0.0179 ± 0.005, HS = 0.0084 ± 0.001), and only 47% of the total gene diversity was maintained within populations (GST = 0.529). The eastern coastal populations of Thailand were more similar to populations from China than to populations from the western coastline of Thailand. A high level of Nei's genetic identity exists between populations of C. tagal (I = 0.989), suggesting their common ancestry. The low levels of genetic diversity in the species may result from a series of genetic bottlenecks during several glacial epochs.  相似文献   

8.
滩涂海岸红树林生态系统通常具有较高的土壤养分,尤其是沉积物有机碳含量。海南岛红树林种类丰富且生长较好,通过对红树林沉积物有机碳组分的基础研究有利于提高对红树林湿地固碳能力的评估精度,加深对海洋蓝碳的认识。以清澜港红树林5种典型群落类型为对象,比较分析表层土壤(0—10 cm)总有机碳(TOC)、微生物生物量碳(MBC)、易氧化有机碳(EOC)、可溶性有机碳(DOC)含量差异及其与土壤因子之间的相关性。结果表明:(1)不同群落类型间,土壤TOC、MBC、DOC和EOC含量均值分别为66.76 g/kg、177.08 mg/kg、25.49 mg/kg和2.34 g/kg。对比发现,土壤TOC在角果木群落中含量最高,但各群落间无显著差异;土壤MBC在不同群落间存在显著差异,其中角果木群落和杯萼海桑群落显著高于榄李群落;土壤DOC在不同群落间存在显著差异,其中海莲群落和角果木群落显著高于其余群落;土壤EOC在不同群落间存在显著差异,其中角果木群落显著高于海莲群落和正红树群落。(2)活性有机碳各个组分占总有机碳的比例均值大小依次为EOC>MBC>DOC。土壤EOC、MBC、DOC的...  相似文献   

9.
Continental scale patterns in mangrove litter fall   总被引:1,自引:0,他引:1  
John S. Bunt 《Hydrobiologia》1995,295(1-3):135-140
Litter fall was monitored in stands of the mangrove species Rhizophora stylosa Griff., Ceriops tagal (Perr.) C. B. Robinson and Avicennia marina (Forsk.), Vierh. at approximately monthly intervals over a single annual cycle at selected locations around the coastline of Australia and throughout the distribution of each species. Concurrent data were obtained from a single location near Port Moresby in Papua New Guinea. The materials recovered in sub-canopy catchers were sorted into major categories and dried and weighed as leaves, petiolar stipules, twigs and other woody tissues, reproductive parts (flowers, flower buds, fruit and propagules) and residual detritus. This paper considers the principal findings of the study among which it may be reported that the highest total annual litter recoveries at individual catchers were 1598 g dry wt m–2 for A. marina, 2369 g dry wt m–2 for R. stylosa and 1290 g dry wt m–2 for C. tagal. Significant regional differences in litter fall emerged when data from major climatic zones were compared. The outcome of this analysis is detailed in the body of the paper.  相似文献   

10.
The genetic structure and morphometric differentiation of mangrove crab Perisesarma guttatum populations were examined among shelf connected locations along a latitudinal gradient on the East African coast. Over 2200 specimens were sampled from 23 mangrove sites for geometric morphometrics analysis. Population genetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) DNA sequences were used to evaluate connectivity among populations. A total of 73 haplotypes were detected, and almost no haplotypes were found in common between two highly supported phylogeographic clades: southern Mozambique (Inhaca Island and Maputo Bay) and a northern clade that included north Mozambique, Tanzania and Kenya. These two clades were identified based on the species' populations pairwise genetic differentiation and geographical location. ΦST values were considerably high between the two clades, indicating the presence of significant population genetic structure between Kenya and South Mozambique. However, each clade was composed of genetically similar populations along the latitudinal gradient, and no significant population structure was found within each clade because the Φst values were not significant. The morphometric analysis corroborated the division into two clades (i.e. Inhaca Island/Maputo Bay and northern populations) and also detected less shape variation among populations that were few kilometres apart. The significant spatial genetic structuring between the southern and the northern populations of P. guttatum along the geographic gradient under study, combined with morphological differences, suggests that these populations may be considered as cryptic species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 28–46.  相似文献   

11.
Variation in the abundance, distribution and size of four species of mangrove littorinid gastropods (genus Littoraria) was investigated using a nested sampling design at different spatial scales along the East African coast, from Tanzania to South Africa. Littorinid abundance and diversity decreased abruptly south of Inhaca Island at the southern end of the study area. All species presented a large-scale spatial variation in abundance, with L. subvittata showing the greatest abundance while L. intermedia was rare. Littoraria scabra and L. intermedia were found mainly at the seaward edge of the forests. Littoraria subvittata increased in abundance in the middle of the forest and towards the landward side. Littoraria pallescens occurred mainly at the seaward edge and in the middle areas in the Rhizophora zone. These small-scale variations show contrasting specific distribution patterns within the mangrove, likely reflecting different tolerances to physical factors and biological interactions. All species appeared decreased in shell height from north to south. Littoraria scabra was always significantly larger than other species at all mangrove study sites. Handling editor: P. Viaroli  相似文献   

12.
Reciprocal transplant experiments were used to study the effects of tidal inundation and light level on growth and survival of four species of mangroves in Australia: Avicennia marina (Forsk.) Vierh., Bruguiera gymnorrhiza (L.) Lam., Ceriops tagal C.T. White, and Rhizophora stylosa Griff. Seedlings were planted in the high or low intertidal and in light gaps or under the shade of a closed canopy. Survival and growth of the seedlings were monitored for 30–36 months. Significant differences in survival were found among species, between intertidal zones and due to light level. Averaged across intertidal zones and light level, survival was greatest for Rhizophora and decreased in the order Ceriops, Avicennia, and Bruguiera. For all species survival was greater (P ⩽ 0.001) in the high than in the low intertidal treatment, regardless of light level. Within the high intertidal all species survived better in light gaps than under the canopy. Relative growth of Rhizophora stylosa, Avicennia marina, and Ceriops tagal were greater in the high versus low intertidal and in gaps versus under the canopy. For Bruguiera gymnorrhiza growth was not significantly different between gap and canopy or high and low intertidal. Although Avicennia marina, Bruguiera gymnorrhiza, and Rhizophora stylosa survived and/or grew best in the high intertidal they reach maximum abundance in the low intertidal. Ceriops tagal, however, performed best in the region where it is most abundant, yet even there, it was out-performed by the former three species. These results indicate that the species zonation patterns often observed across the intertidal cannot be explained by physiological adaptation alone. Factors such as propagule dispersal, competition and predation on propagules may also be important.  相似文献   

13.
Tropical mangrove forests are characterized by clear zonation along a tidal gradient, and it has been supposed that the zonation is primarily controlled by soil factors. However, effects of disturbance on mangrove forests are still not well understood and may play an important role on the vegetation patterns and forest dynamics in some forest formations. In this study, the pattern of disturbance regime and its effects on regeneration of tropical mangrove forests along a tidal gradient were investigated in Ranong, Thailand. We established one or two 0.5 ha plots in four vegetation zones, i.e. Sonneratia albaAvicennia alba zone, Rhizophora apiculata zone, Ra – Bruguiera gymnorrhiza zone, Ceriops tagalXylocarpus spp. zone. Gap size (percentage gap area to total study area and individual gap size) was the largest in Sa–Aa zone which is located on the most seaward fringe, and it declined from seaward to inland. Canopy trees of S. alba and A. alba had stunted trunks and showed low tree density. On the contrary, canopy dominants in the other three inland zones, e.g. R. apiculata, B. gymnorrhiza, and Xylocarpus spp., had slender trunks and showed high tree density. Accordingly, differences in disturbance regime among the four zones were resulted from the forest structural features of each zone. Disturbance regime matched with regeneration strategies of canopy dominants. Seedlings and saplings of S. alba and A. alba, which need sunny condition for their growth, were abundant in gaps than in understorey. By contrast, R. apiculata, B. gymnorrhiza, and Xylocarpus spp., which can tolerate less light than S. alba and A. alba, had greater seedling and sapling density under closed canopy than gaps. Many large gaps may enhance the abundance of S. alba and A. alba in Sa–Aa zone, and a few small gaps may prevent the light demanding species to establish and grow in the other inland zones. Correspondence of disturbance regime and regeneration strategies (e.g. light requirement) of canopy dominants may contribute to the maintenance of the present species composition in each of the vegetation zones.  相似文献   

14.
Huang Y  Tan F  Su G  Deng S  He H  Shi S 《Genetica》2008,133(1):47-56
Ceriops is a viviparous mangrove with widespread species Ceriops decandra and C. tagal, and an endemic species C. australis. Genetic diversity of the three species was screened in 30 populations collected from 23 locations in the Indo West Pacific (IWP) using Inter-simple sequence repeats (ISSR) and sequences of partial nuclear gene (G3pdh) and chloroplast DNA (trnV-trnM). At the species level, the total gene diversity (Ht) revealed by ISSRs was 0.270, 0.118, and 0.089 in C. decandra, C. tagal, and C. australis, respectively. A total of six haplotypes of G3pdh and five haplotypes of trnV-trnM were recognized among the three species. Only C. decandra was detected containing more than one haplotype from each sequence data set (four G3pdh haplotypes and three trnV-trnM haplotypes). At the population level, genetic diversity of Ceriops was relatively low inferred from ISSRs (He = 0.028, 0.023, and 0.053 in C. decandra, C. tagal, and C. australis, respectively). No haplotype diversity within population was detected from any of the three species. Cluster analysis based on ISSRs identified three major geographical groups in correspond to the East Indian Ocean (EIO), South China Sea (SCS), and North Australia (NA) in both C. decandra and C. tagal. The cladogram from DNA sequences also detected the same three geographical groups in C. decandra. Analysis of molecular variance (AMOVA) revealed that most of the total variation was accounted for by differentiation between the three major geographical regions of both C. decandra and C. tagal. The significant genetic structure may result from the geological events in these regions during the recent Pleistocene glaciations. This study also provided insights into the phylogenetics of Ceriops. Yelin Huang and Fengxiao Tan contributed equally to this work.  相似文献   

15.
The genetic structure of mangrove species is greatly affected by their geographic history. Nine natural populations of Ceriops tagal were collected from Borneo, the Malay Peninsula, and India for this phylogeographic study. Completely different haplotype compositions on the east versus west coasts of the Malay Peninsula were revealed using the atpB-rbcL and trnL-trnF spacers of chloroplast DNA. The average haplotype diversity (Hd) of the total population was 0.549, nucleotide diversity (θ) was 0.030, and nucleotide difference (π) was 0.0074. The cladogram constructed by the index of population differentiation (G ST) clearly separated the South China Sea populations from the Indian Ocean populations. In the analysis of the minimum spanning network, the Indian Ocean haplotypes were all derived from South China Sea haplotypes, suggesting a dispersal route of C. tagal from Southeast Asia to South Asia. The Sunda Land river system and surface currents might be accountable for the gene flow directions in the South China Sea and Bay of Bengal, respectively. The historical geography not only affected the present genotype distribution but also the evolution of C. tagal. These processes result in the genetic differentiation and the differentiated populations that should be considered as Management Units (MUs) for conservation measurements instead of random forestation, which might lead to gene mixing and reduction of genetic variability of mangrove species. According to this phylogeographic study, populations in Borneo, and east and west Malay Peninsula that have unique genotypes should be considered as distinct MUs, and any activities resulting in gene mixing with each other ought to be prevented.  相似文献   

16.
Species zonation patterns across tidal gradients in mangrove forests are formed by successful seedling establishment and maintained by replacement of adults by conspecific seedlings. These two processes rarely have been examined experimentally in neotropical mangal. We studied survivorship and growth of seedlings of two species of mangrove, Rhizophora mangle L. and Avicennia germinans (L.) Steam, across a tidal gradient in Belize, Central America. Propagules of each species were planted in common gardens at tidal elevations corresponding to lowest low water (LLW), mean water (MW), and highest high water (HHW). Sixty-nine percent of Rhizophora seedlings planted at MW and 56% of those planted at LLW survived 1 year. Forty-seven percent of MW Avicennia seedlings also survived 1 year. No individuals of either species survived at HHW, and neither did any LLW Avicennia seedlings. Among the surviving Rhizophora seedlings, LLW seedlings grew more rapidly in terms of height, diameter, leaf production, and biomass than did MW seedlings. Insect herbivory was twice as high on MW seedlings as on LLW Rhizophora seedlings. We also examined the response of established Rhizophora seedlings to experimental removal of the adult Rhizophora canopy. Seedlings in canopy removal areas had higher survivorship, grew twice as fast, produced more leaves, and had less than half the herbivory of seedlings growing beneath an intact canopy. These results provide insights into underlying causes and maintenance of zonation in Caribbean mangrove forests.  相似文献   

17.
Sea level rise elicits short‐ and long‐term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014–2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%–117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long‐term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re‐shaping the unique coastal landscape of the Big Bend.  相似文献   

18.
Growth and physiological response of woody plants to flooding have been analyzed in detail; however, relatively few studies have been oriented towards the effects of water immersion on cambial activity and wood and bark anatomy of trees that are growing in prolonged flooding conditions. These studies are important to understand the possible effects of predicted sea level rising in mangroves as a consequence of global warming. We studied five species growing in a mangrove forest, sampling three to six trees of each species, in sites that have the longest flooding period. Differences in bark appearance and phloem structure between the submerged stem portion and the portion of the stem above the water surface exist in all species. Although aerenchyma formation and stem hypertrophy are the most common events related to flooding, each type of tissue responded differently. Annona glabra L., Laguncularia racemosa (L.) Gaertn f. and Hibiscus tiliaceus L. developed rythidome. Avicennia germinans (L.) Stearn developed rythidome only in the submerged stem portion. Phyllanthus elsiae Urb., developed one periderm in both stem portions. Species that developed rythidome also developed aerenchyma between periderms and in the phellem. H. tiliaceus and P. elsiae, showed the highest values for anatomical phloem and periderm characters below water surface, while an inverse tendency was observed in A. glabra and L. racemosa, suggesting that prolonged flooding modifies vascular cambium and phellogen differently. Results indicate that sea level rising would affect distribution of the species according to their specific flooding tolerance.  相似文献   

19.
Calder  Dale R. 《Hydrobiologia》1991,216(1):221-228
Qualitative and quantitative collecting was undertaken in 1987 to determine the species composition, abundance, and distribution of hydroids in a mangrove system at Twin Cays, Belize. Of 49 species identified, the 5 most frequent were Ventromma halecioides, Nemalecium sp., Clytia hemisphaerica, Dynamena crisioides and Halopteris diaphana. Line-transect census data and qualitative observations showed that the hydroid fauna was sparse in sheltered, still-water areas of the mangal, but relatively abundant and diverse in areas exposed to waves and/or tidal currents. Species composition and relative abundance varied with depth at stations in exposed locations and in tidal creeks and channels. Although Turritopsoides brehmeri is known only from Twin Cays at present, it seems improbable that any of the species is restricted to mangrove ecosystems.  相似文献   

20.
Coringa mangrove forest is located in the Godavari delta, Andhra Pradesh, India. The mangrove community consisted of more than 13 species of mangrove and other plants in the present study area. The following three dominant mangrove plants,Avicennia marina, Excoecaria agallocha andSonneratia apetala were found to be present on the banks of a major channel of the Godavari river running through the forest. The structure and species distribution of mangrove, in the Channel Nagathana Kalaya has been described. The area behind the belt consisting ofAcanthus ilicifolius andMyriostachya wightiana is generally colonized byE. agallocha andA. marina. The zone has been called theAvicennia andExcoecaria zone. Adjacent to this zone species likeAegiceras corniculatum andA. officinalis were the common species. In the flat clayey soil,Suaeda maritima was found to grow. In areas of high elevation, devoid of inundation of tidal seawater during the high tidal period, species such asM. wightiana andAcanthus were found to colonize both the banks of the channels.An analysis of species diversity, indicated a definite trend in the distribution of mangrove from the mouth of the estuarine region to the inland waters.The levels of atmospheric pollutants such as sulphur dioxide (SO2), oxides of nitrogen (NOx), ammonia (NH3) and suspended particle matter (SPM) were within the legal limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号