首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Metallothionein (MT) is a small cysteine-rich protein thought to play a critical role in cellular detoxification of inorganic species by sequestering metal ions that are present in elevated concentrations. We demonstrate here that metallothionein can play an important role at the other end of the homeostatic spectrum by scavenging an essential metal in a mouse fibroblast cell line that has been cultured under conditions of extreme zinc deprivation (LZA-LTK-). These cells unexpectedly produce constitutively high levels of metallothionein mRNA; however, the MT protein accumulates only when high concentrations of zinc are provided in the media. Until this MT pool is saturated, no measurable zinc remains in the external media. In this case, zinc deprivation leads to amplification of the MT gene locus in the LZA-LTK- cell line. Furthermore, the intracellular zinc levels in the fully adapted cells remain at the normal level of 0.4 fmol zinc/cell, even when extracellular zinc concentration is decreased by 2 orders of magnitude relative to normal media.  相似文献   

2.
Caco-2 cells possess many morphological and biochemical characteristics of intestinal absorptive cells, including the ability to transport zinc. In the present study, metallothionein (MT) synthesis in response to increased levels of zinc was examined. Increased incorporation of [35S]cysteine into MTs was observed when excess ZnCl2 was added to the medium. The rate of MT synthesis was found to be concentration dependent. Also, induction of MT synthesis was greater early in the culture, before the cells were fully differentiated. Incubation of the monolayers with 65Zn and 200 μm zinc revealed that approximately 50% of the zinc incorporated into the cells was associated with MTs. The remainder was associated with large proteins as well as amino acids and small peptides. Actinomycin D and cycloheximide both inhibited the induction of MT synthesis, suggesting that the newly synthesized MTs are a result of expression of MT genes. Hence, Caco-2 cells, a model of intestinal absorptive cells, may be used to examine the role of MTs in zinc absorption.  相似文献   

3.
Caco-2 cells grown in bicameral chambers are a model system to study intestinal iron absorption. Caco-2 cells exhibit constitutive transport of iron from the apical (luminal) chamber to the basal (serosal) chamber that is enhanced by apo-transferrin in the basal chamber, with the apo-transferrin undergoing endocytosis to the apical portion of the cell. With the addition of iron to the apical surface, divalent metal transporter 1 (DMT1) on the brush-border membrane (BBM) undergoes endocytosis. These findings suggest that in Caco-2 cells DMT1 and apo-transferrin may cooperate in iron transport through transcytosis. To prove this hypothesis, we determined by confocal microscopy that, after addition of iron to the apical chamber, DMT1 from the BBM and Texas red apo-transferrin from the basal chamber colocalized in a perinuclear compartment. Colocalization was also observed by isolating endosomes from Caco-2 cells after ingestion of ultra-small paramagnetic particles from either the basal or apical chamber. The isolated endosomes contained both transferrin and DMT1 independent of the chamber from which the paramagnetic particles were endocytosed. These findings suggest that iron transport across intestinal epithelia may be mediated by transcytosis.  相似文献   

4.
Adaptation to high and low copper intake in mammals depends on the cellular control of influx, efflux and storage mechanisms of cellular copper concentrations. In the present study, we used an intestinal cell line (Caco-2), grown in bicameral chambers to study the effect of equilibrium loading with copper. We analyzed (64)Cu uptake from the apical surface, intracellular metal (Cu, Zn, Fe) content, (64)Cu transport into the basal chamber, and total copper, zinc and iron in the basal chamber. We found that the (64)Cu uptake is saturable, shows a linear response phase up to 1.5 microM reaching a plateau at 4-6 microM extracellular Cu. Intracellular copper increased 21.6-fold, from 1.5 to 32.4 mM (at 0.2-20.2 microM extracellular copper respectively). The time course for (64)Cu uptake and transport was linear when the cells were incubated with different copper concentrations. Uptake increased 10-fold when intracellular copper concentration was raised. Fluxes were lowest at 1.5 mM and highest at 32.4 mM Cu intracellular copper (2.03 and 20. 98 pmole (64)Cu insert(-1) h(-1), respectively). The apical-to-basolateral copper transfer rate was lower at 32.4 mM as compared to 1.5 mM intracellular copper (0.55-1.95 pmole (64)Cu insert(-1) h(-1), respectively). The total copper in the basal chamber increased 4.2-fold (from 3.04 to 12.85 pmole Cu insert(-1) h(-1)) when the intracellular copper concentration was raised. If cells are preincubated in a low copper medium most of the newly incorporated copper (64%) is transferred to the basolateral compartment. In contrast, under preloading with high copper concentration, only 4% of the fresh copper is transferred to the basal chamber; however, the intracellular copper contribution to this chamber increases by 4.2-fold. Thus, the process results in an increase in both storage and intracellular-to-basolateral flux of copper. In summary, our results indicate that copper fluxes from apical-to-cell and apical-to-basolateral domains are affected by intracellular copper concentration suggesting that mechanisms of copper transport involved in cellular adaptation to low and high copper exposure are different.  相似文献   

5.
6.
For CHO Cdr cells the presence of lead acetate in the media in concentrations above 1 mM leads to gradual cell death, as measured by the reduction of [3H]thymidine incorporation into DNA. These cells accumulate an increased amount of newly synthesized metallothionein. Typical 9S metallothionein mRNA could be detected by hybridization using metallothionein cDNA probes, with maximal accumulation occurring after 4-h exposure of cells to 2 mM lead acetate. The intracellular levels of metallothionein protein increase continually with time; metallothionein was identified by its richness in cysteine, chromatographic and electrophoretic behavior and reactiveness to carboxyamidomethylation. When separated by an anion-exchanger, both isospecies MT I and MT II could be observed, as they were identical in every respect tested to those induced by zinc chloride. The induction of metallothionein by lead was not due to an increase in intracellular zinc levels, as zinc uptake was unaffected by the presence of lead acetate in the media.  相似文献   

7.
8.
We characterized the three-dimensional organization of microtubules in the human intestinal epithelial cell line Caco-2 by laser scanning confocal microscopy. Microtubules formed a dense network approximately 4-microns thick parallel to the cell surface in the apical pole and a loose network 1-micron thick in the basal pole. Between the apical and the basal bundles, microtubules run parallel to the major cell axis, concentrated in the vicinity of the lateral membrane. Colchicine treatment for 4 h depolymerized 99.4% of microtubular tubulin. Metabolic pulse chase, in combination with domain-selective biotinylation, immune and streptavidin precipitation was used to study the role of microtubules in the sorting and targeting of four apical and one basolateral markers. Apical proteins have been recently shown to use both direct and transcytotic (via the basolateral membrane) routes to the apical surface of Caco-2 cells. Colchicine treatment slowed down the transport to the cell surface of apical and basolateral proteins, but the effect on the apical proteins was much more drastic and affected both direct and indirect pathways. The final effect of microtubular disruption on the distribution of apical proteins depended on the degree of steady-state polarization of the individual markers in control cells. Aminopeptidase N (APN) and sucrase-isomaltase (SI), which normally reach a highly polarized distribution (110 and 75 times higher on the apical than on the basolateral side) were still relatively polarized (9 times) after colchicine treatment. The decrease in the polarity of APN and SI was mostly due to an increase in the residual basolateral expression (10% of control total surface expression) since 80% of the newly synthesized APN was still transported, although at a slower rate, to the apical surface in the absence of microtubules. Alkaline phosphatase and dipeptidylpeptidase IV, which normally reach only low levels of apical polarity (four times and six times after 20 h chase, nine times and eight times at steady state) did not polarize at all in the presence of colchicine due to slower delivery to the apical surface and increased residence time in the basolateral surface. Colchicine-treated cells displayed an ectopic localization of microvilli or other apical markers in the basolateral surface and large intracellular vacuoles. Polarized secretion into apical and basolateral media was also affected by microtubular disruption. Thus, an intact microtubular network facilitates apical protein transport to the cell surface of Caco-2 cells via direct and indirect routes; this role appears to be crucial for the final polarity of some apical plasma membrane proteins but only an enhancement factor for others.  相似文献   

9.
The copper complex of 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) or CuKTS is reduced and dissociated upon reaction with Ehrlich cells. Titration of the cells with the complex leads to the specific binding of copper to metallothionein with 1 to 1 displacement of its complement of zinc. Under conditions of complete titration of metallothionein, 1.25-2.5 nmol CuKTS/10(7) cells, cellular DNA synthesis is rapidly inhibited but no long term effects on cell proliferation are observed. The kinetics of redistribution of Cu and Zn in Ehrlich cells in culture and in animals were studied after pulse reaction of CuKTS with cells. After exposure of cells to the noncytotoxic concentration of 2.5 nmol of CuKTS/10(7) cells, nonmetallothionein bound copper is lost rapidly from the cells, after which copper in metallothionein decays. New zinc metallothionein is made as soon as exposed cells are placed in culture. New synthesis stops when the level of zinc in metallothionein reaches control levels. A second pulse treatment of cells with CuKTS to displace zinc from metallothionein again stimulates new synthesis of the protein to restore its normal concentration. The kinetics of metal metabolism in Ehrlich cells exposed to 5.5 nmol of CuKTS/10(7) cells, which inhibits cell proliferation, are qualitatively similar except there is a pronounced lag before new zinc metallothionein is synthesized. The Ehrlich ascites tumor in mice responds to CuKTS similarly to cells in culture. It is also shown that cultured Ehrlich cells do not make extra zinc metallothionein in the presence of high levels of ZnCl2, and fail to accumulate copper in the presence of large concentrations of CuCl2.  相似文献   

10.
Metallothioneins (MTs) release bound metals when exposed to nitric oxide. At inflammatory sites, both metallothionein and inducible nitric oxide synthase (iNOS) are induced by the same factors and the zinc released from metallothionein by NO suppresses both the induction and activity of iNOS. In a search for a possible modulatory mechanism of this coexpression of counteracting proteins, we investigated the role of the glutathione redox state in vitro because the oxidation state of thiols is involved in the metal binding in Cd-S or Zn-S clusters found in metallothioneins, and NO also binds to reduced glutathione via S-nitrosation. Using a variety of techniques, we found that NO and also ONOO(-)-mediated metal release from purified MTs is suppressed by reduced glutathione (GSH), but not by oxidized glutathione. Considering the millimolar concentrations of GSH present in mammalian cells, the metal release from MTs by NO should play no role in living systems. Therefore, the fact that it has been observed in vivo points to a hitherto unknown mechanism or additional compound(s) being involved in this physiologically relevant reaction and as long as this additional factor is not found experimental results on the MT-NO interaction should be treated with caution. Contrary to the peroxynitrite-induced activation of guanylyl cyclase, where GSH is needed, we found that the metal release from metallothionein by peroxynitrite is not enhanced, but also suppressed by reduced glutathione. In addition, we show that zinc, the major natural metal ligand in mammalian MTs and suppressor of iNOS, is released more readily under the influence of NO than cadmium, but in contrast to the MT isoform 1, the amount of metal released from the beta-domain of MT-2 is comparable to that from the alpha-domain.  相似文献   

11.
Transgenic mice containing a sheep metallothionein 1a-sheep growth hormone fusion gene exhibited low, tissue-specific basal levels of transgene mRNA expression, resulting in slightly elevated levels of circulating growth hormone that did not lead to a detectable increase in growth. After zinc stimulation, high levels of transgene mRNA expression were induced in a number of tissues; these levels correlated with increased levels of circulating growth hormone, resulting in growth increases of up to 1.5 times the levels of controls and unstimulated transgenic mice. After removal of the zinc stimulus, transgene expression and circulating growth hormone concentrations returned to basal levels. Additional evidence from the pattern of developmental expression of the transgene suggests that zinc is the main regulator of this promoter in mice. The demonstrated regulation and low basal level of expression of the sheep metallothionein 1a promoter make it a candidate for use in other mouse transgenic studies and for use in transgenic livestock, in which regulation of expression is essential.  相似文献   

12.
Summary Placental cells in the ovarian transmitting tissue ofLilium spp. are organized as transfer cells with inbuddings facing the ovarian locule. A detailed analysis of microtubule (MT) organization during development of these polarized cells is reported here. Formation of wall projections occurs at the apical part of the cell starting on the day of anthesis, and a fully mature secretion zone is found four days after anthesis. MTs are organized into distinct cortical and central arrays. The cortical array undergoes a unique transition at anthesis. MTs in the basal half of the cell remain in longitudinal bundles while in the apical half of the cell their longitudinal orientation is replaced by a transverse alignment. One day after anthesis, these transverse bundles become a meshwork of short, randomly organized MTs, while MTs in the basal half of the cell retain their longitudinal alignment. The realignment of MTs in the apical half of the cell coincides with the deposition of the secondary cell wall. The central array is composed of short, randomly arranged strands of MTs in the cytoplasm between the nucleus and the apical and basal periclinal walls of the cell. This array first appears as solitary strands in the apical part of the cell one day before anthesis. The central array extends during development and is eventually seen in the basal half of the cell. We propose that MTs in the cortical region near the apical wall act as templates for the deposition of cellulose microfibrils in the secondary cell wall. MTs in the central array in these transfer cells may be involved in the trafficking of vesicles and/or positioning of organelles near the secretion zone.Abbreviations MT microtubule - daa day after anthesis - dba day before anthesis  相似文献   

13.
The distribution of SGLT1 and GLUT2 hexose transporters has been evaluated in enterocytes of an isolated loop of the small intestine and Caco-2 cell culture after absorption of hexoses at their high and low concentrations. The SGLT1 transporter was found to be located in enterocytes along the edge of the intestinal villus. The GLUT2 transporter after loading with high hexose concentrations is located in the apical part of enterocytes. In culture, Caco-2 cells form a characteristic of enterocytes microvilli and the cell junction complex. During the incubation of the culture in solutions of glucose and galactose, the absorption of these sugars from the incubation medium was observed. The SGLT1 transporter in the Caco-2 cells is located in the apical and perinuclear enterocyte parts and is organized in globules. After loading with hexoses at low concentrations, the GLUT2 transporter is in the basal cell area. The Caco-2 cell culture can serve a model for studying the transport of sugar in the intestinal epithelium.  相似文献   

14.
The role of glycans in the apical targeting of proteins in epithelial cells remains a debated question. We have expressed the mouse soluble dipeptidyl peptidase IV (DPP IV ectodomain) in kidney (MDCK) and in intestinal (Caco-2) epithelial cell lines, as a model to study the role of glycosylation in apical targeting. The mouse DPP IV ectodomain was secreted mainly into the apical medium by MDCK cells. Exposure of MDCK cells to GalNac-alpha-O-benzyl, a drug previously described as an inhibitor of mucin O-glycosylation, produced a protein with a lower molecular weight. In addition this treatment resulted in a decreased apical secretion and an increased basolateral secretion of mouse DPP IV ectodomain. When expressed in Caco-2 cells, the mouse DPP IV ectodomain was secreted mainly into the basolateral medium. However, BGN was still able to decrease the amount of apically secreted protein and to increase its basolateral secretion. Neuraminidase digestion showed that the most striking effect of BGN was a blockade of DPP IV sialylation in both MDCK and Caco-2 cells. These results indicate that a specific glycosylation step, namely, sialylation, plays a key role in the control of the apical targeting of a secreted DPP IV both in MDCK and Caco-2 cells.  相似文献   

15.
The influence of copper status on Caco-2 cell apical iron uptake and transepithelial transport was examined. Cells grown for 7-8 days in media supplemented with 1 microM CuCl(2) had 10-fold higher cellular levels of copper compared with control. Copper supplementation did not affect the integrity of differentiated Caco-2 cell monolayers grown on microporous membranes. Copper-repleted cells displayed increased uptake of iron as well as increased transport of iron across the cell monolayer. Northern blot analysis revealed that expression of the apical iron transporter divalent metal transporter-1 (DMT1), the basolateral transporter ferroportin-1 (Fpn1), and the putative ferroxidase hephaestin (Heph) was upregulated by copper supplementation, whereas the recently identified ferrireductase duodenal cytochrome b (Dcytb) was not. These results suggest that DMT1, Fpn1, and Heph are involved in the iron uptake process modulated by copper status. Although a clear role for Dcytb was not identified, an apical surface ferrireductase was modulated by copper status, suggesting that its function also contributes to the enhanced iron uptake by copper-repleted cells. A model is proposed wherein copper promotes iron depletion of intestinal Caco-2 cells, creating a deficiency state that induces upregulation of iron transport factors.  相似文献   

16.
The Caco-2 cell line is well established as an in vitro model for iron absorption. However, the model does not reflect the regulation of iron absorption by hepcidin produced in the liver. We aimed to develop the Caco-2 model by introducing human liver cells (HepG2) to Caco-2 cells. The Caco-2 and HepG2 epithelia were separated by a liquid compartment, which allowed for epithelial interaction. Ferritin levels in cocultured Caco-2 controls were 21.7±10.3 ng/mg protein compared to 7.7±5.8 ng/mg protein in monocultured Caco-2 cells. The iron transport across Caco-2 layers was increased when liver cells were present (8.1%±1.5% compared to 3.5%±2.5% at 120 μM Fe). Caco-2 cells were exposed to 0, 80 and 120 μM Fe and responded with increased hepcidin production at 120 μM Fe (3.6±0.3 ng/ml compared to 2.7±0.3 ng/ml). The expression of iron exporter ferroportin in Caco-2 cells was decreased at the hepcidin concentration of 3.6 ng/ml and undetectable at external addition of hepcidin (10 ng/ml). The apical transporter DMT1 was also undetectable at 10 ng/ml but was unchanged at the lower concentrations. In addition, we observed that sourdough bread, in comparison to heat-treated bread, increased the bioavailability of iron despite similar iron content (53% increase in ferritin formation, 97% increase in hepcidin release). This effect was not observed in monocultured Caco-2 cells. The Caco-2/HepG2 model provides an alternative approach to in vitro iron absorption studies in which the hepatic regulation of iron transport must be considered.  相似文献   

17.
18.
19.
The cyanobacterial metallothionein (MT) SmtA is the prototype for bacterial MTs and protects against elevated levels of zinc. In contrast to mammalian MTs, bacterial MTs coordinate to metal ions not only via cysteine sulfurs, but unusually for MTs, also via histidine nitrogens. To investigate whether histidine coordination in these metal-sulfur clusters provides advantages over S-coordination only, we mutated the two metal-binding histidine residues in the cyanobacterial MT SmtA from Synechococcus PCC7942 to cysteines. We show that the mutant proteins are still capable of binding up to four zinc ions as is the wild-type protein. However, the mutations perturb protein folding and metal-binding dynamics. Interestingly, several homologues of SmtA also show variations in these two residues. We conclude that histidine residues in Synechococcus PCC7942 SmtA have a stabilising effect due to electrostatic interactions that impact on protein folding and metal cluster charge, and are involved in fine-tuning the reactivity of the bound metal ions.  相似文献   

20.
Lipopolysaccharide-binding protein (LBP) is an important modulator of the host's response to endotoxin. In a previous study, we found evidence for the synthesis of LBP by intestinal epithelial cells. In this study, we explored the polarity of LBP secretion by these cells. Polarized monolayers of Caco-2 cells were used as intestinal mucosa model. Cells were stimulated apically or basally with cytokines, and LBP secretion was analyzed. Furthermore, the presence of LBP in intestinal mucus of healthy and endotoxemic mice was studied using a mucus-sampling technique. The constitutive unipolar LBP secretion from the apical cell surface was markedly enhanced when cells were exposed to cytokines at their apical surface. However, bioactive LBP was secreted from both cell surfaces after basolateral stimulation of cells. Cytokines also influenced the secretion of the acute phase proteins serum amyloid A, apoA-I, and apoB from both surfaces of Caco-2 cells. Furthermore, transport of exogenous LBP from the basolateral to the apical cell surface was demonstrated. In line with these in vitro data, the presence of LBP in intestinal mucus was strongly enhanced in mice after a challenge with endotoxin. The results indicate that LBP is present at the mucosal surface of the intestine, a phenomenon for which secretion and transport of LBP by intestinal epithelial cells may be responsible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号