首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
3.
Reichenstein M  German T  Barash I 《FEBS letters》2005,579(10):2097-2104
beta-Lactoglobulin (BLG) is a major ruminant milk protein. A regulatory element, termed BLG-e1, was defined in the distal region of the ovine BLG gene promoter. This 299-bp element lacks the established cis-regulatory sequences that affect milk-protein gene expression. Nevertheless, it alters the binding of downstream BLG sequences to histone H4 and the sensitivity of the histone-DNA complexes to trichostatin A treatment. In mammary cells cultured under favorable lactogenic conditions, BLG-e1 acts as a potent, position-independent silencer of BLG/luciferase expression, and similarly affects the promoter activity of the mouse whey acidic protein gene. Intragenic sequences upstream of BLG exon 2 reverse the silencing effect of BLG-e1 in vitro and in transgenic mice.  相似文献   

4.
5.
The alpha subunit of translation initiation factor 2 (eIF2alpha) is the target of specific kinases that can phosphorylate a conserved serine residue as part of a mechanism for regulating protein expression at the translational level in eukaryotes. The structure of the 20 kDa N-terminal region of eIF2alpha from Saccharomyces cerevisiae was determined by X-ray crystallography at 2.5A resolution. In most respects, the structure is similar to that of the recently solved human eIF2alpha; the rather elongated protein contains a five-stranded antiparallel beta-barrel in its N-terminal region, followed by an almost entirely helical domain. The S.cerevisiae eIF2alpha lacks a disulfide bridge that is present in the homologous protein in humans and some of the other higher eukaryotes. Interestingly, a conserved loop consisting of residues 51-65 and containing serine 51, the putative phosphorylation site, is visible in the electron density maps of the S.cerevisiae eIF2alpha; most of this functionally important loop was not observed in the crystal structure of the human protein. This loop is relatively exposed to solvent, and contains two short 3(10) helices in addition to some extended structure. Serine 51 is located at the C-terminal end of one of the 3(10) helices and near several conserved positively charged residues. The side-chain of serine 51 is sufficiently exposed so that its phosphorylation would not necessitate a substantial change in the protein structure. The structures and relative positions of residues that have been implicated in kinase binding and in the interaction with guanine nucleotide exchange factor (eIF2B) are described.  相似文献   

6.
7.
Efficient protein synthesis in bacteria requires initiation factor 2 (IF2), elongation factors Tu (EF-Tu) and G (EF-G), and release factor 3 (RF3), each of which catalyzes a major step of translation in a GTP-dependent fashion. Previous reports have suggested that recruitment of factors to the ribosome and subsequent GTP hydrolysis involve the dimeric protein L12, which forms a flexible "stalk" on the ribosome. Using heteronuclear NMR spectroscopy we demonstrate that L12 binds directly to the factors IF2, EF-Tu, EF-G, and RF3 from Escherichia coli, and map the region of L12 involved in these interactions. Factor-dependent chemical shift changes show that all four factors bind to the same region of the C-terminal domain of L12. This region includes three strictly conserved residues, K70, L80, and E82, and a set of highly conserved residues, including V66, A67, V68 and G79. Upon factor binding, all NMR signals from the C-terminal domain become broadened beyond detection, while those from the N-terminal domain are virtually unaffected, implying that the C-terminal domain binds to the factor, while the N-terminal domain dimer retains its rotational freedom mediated by the flexible hinge between the two domains. Factor-dependent variations in linewidths further reveal that L12 binds to each factor with a dissociation constant in the millimolar range in solution. These results indicate that the L12-factor complexes will be highly populated on the ribosome, because of the high local concentration of ribosome-bound factor with respect to L12.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号