首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The retina in adult mammals, unlike those in lower vertebrates such as fish and amphibians, is not known to support neurogenesis. However, when injured, the adult mammalian retina displays neurogenic changes, raising the possibility that neurogenic potential may be evolutionarily conserved and could be exploited for regenerative therapy. Here, we show that Müller cells, when retrospectively enriched from the normal retina, like their radial glial counterparts in the central nervous system (CNS), display cardinal features of neural stem cells (NSCs), i.e., they self-renew and generate all three basic cell types of the CNS. In addition, they possess the potential to generate retinal neurons, both in vitro and in vivo. We also provide direct evidence, by transplanting prospectively enriched injury-activated Müller cells into normal eye, that Müller cells have neurogenic potential and can generate retinal neurons, confirming a hypothesis, first proposed in lower vertebrates. This potential is likely due to the NSC nature of Müller cells that remains dormant under the constraint of non-neurogenic environment of the adult normal retina. Additionally, we demonstrate that the mechanism of activating the dormant stem cell properties in Müller cells involves Wnt and Notch pathways. Together, these results identify Müller cells as latent NSCs in the mammalian retina and hence, may serve as a potential target for cellular manipulation for treating retinal degeneration.  相似文献   

2.
3.
4.
运用免疫组织化学方法(ABC法)结合数学形态学技术观察了胶质纤维酸性蛋白(GFAP)在无蹼壁虎(Gekko swinhonis)视网膜的分布及与衰老相关性变化。结果显示,GFAP免疫阳性结果主要位于视网膜的Müller细胞内侧端的胞体、突起和膨大的终足,胞体外侧端呈弱阳性。比较成年组与老年组视网膜中央区GFAP免疫阳性形态学参数显示:老年组GFAP免疫阳性Müller细胞短径较成年组增粗;老年组GFAP免疫阳性细胞的光密度值较成年组增高;老年组视网膜各层GFAP免疫阳性面积占视网膜总面积的百分率较成年组增高。GFAP在无蹼壁虎视网膜的分布特点及年龄相关性变化,提示Müller细胞可能通过增加GFAP表达或减弱分解来参与视网膜衰老过程中的生理功能调节。  相似文献   

5.
Moderate to intense light is reported to damage the chick retina, which is cone dominated. Light damage alters neurotransmitter pools, such as those of glutamate. Glutamate level in the retina is regulated by glutamate–aspartate transporter (GLAST) and glutamine synthetase (GS). We examined immunolocalization patterns and the expression levels of both markers and of glial fibrillary acidic protein (GFAP, a marker of neuronal stress) in chick retina exposed to 2000 lux under 12-h light:12-h dark (12L:12D; normal photoperiod), 18L:6D (prolonged photoperiod), and 24L:0D (constant light) at post-hatch day 30. Retinal damage (increased death of photoreceptors and inner retinal neurons and Müller cell hypertrophy) and GFAP expression in Müller cells were maximal in 24L:0D condition compared to that seen in 12L:12D and 18L:6D conditions. GS was present in Müller cells and GLAST expressed in Müller cell processes and photoreceptor inner segments. GLAST expression was decreased in 24L:0D condition, and the expression levels between 12L:12D and 18L:6D, though increased marginally, were statistically insignificant. Similar was the case with GS expression that significantly decreased in 24L:0D condition. Our previous study with chicks exposed to 2000 lux reported increased retinal glutamate level in 24L:0D condition. The present results indicate that constant light induces decreased expressions of GLAST and GS, a condition that might aggravate glutamate-mediated neurotoxicity and delay neuroprotection in a cone-dominated retina.  相似文献   

6.
The distribution of glial fibrillary acidic protein (GFAP) in normal human retina and in retinae with gliosis due to different diseases was studied by immunohistochemical methods. In normal retina, an evident GFAP-positivity is encountered only in the nerve fiber and ganglion cell layers; Müller cells do not stain. In retinal gliosis, together with an enhanced positivity of the perivascular and accessory glia, a strong staining for GFAP is observed in Müller cells, which extends from the inner to the outer limiting layers. A correlation between the intensity of immunohistochemical glial staining, its anatomical localization and the degree of retinal changes is suggested.  相似文献   

7.
We have previously demonstrated that glial fibrillary acidic protein (GFAP) containing intermediate filaments in retinal Müller cells undergo both quantitative induction and subcellular reorganization as a response to long-term retinal detachment (an induced CNS degeneration wherein the Müller cells form a multicellular scar). This study demonstrates by RNA blotting analysis that normal retina expresses a low basal level of GFAP mRNA, which is induced approximately 500% within 3 days of retinal detachment. At the cellular level, electron microscopic in situ hybridization analysis readily detects GFAP mRNA in Müller cells of detached retinas, but not in normal retinas. On the other hand, GFAP mRNA was readily detected in retinal astrocytes (which appear to express GFAP mRNA at high, constitutive levels). In both cell types, the ultrastructural localization of GFAP mRNA was the same. In the nuclei, the GFAP mRNA was associated with amorphous, electron-dense regions within the euchromatin. In the cytoplasm, the GFAP mRNA was associated with intermediate filaments near the nuclear pores, along the filaments when no other structures were apparent, and when the filaments appeared to be associated with ribosomes and polysomes. The ultrastructural location of the GFAP mRNA (especially along the intermediate filaments) may be unique to this mRNA or may represent a more generalized mRNA phenomenon.  相似文献   

8.
9.
p75神经营养素受体在视网膜的发育以及再生过程中发挥着重要的作用,而在人类视网膜中的分布状况尚未被研究. 利用免疫组织化学方法,在光镜水平下确定了p75在人胚胎发育5、6和7个月的视网膜中的分布情况. 在视网膜神经节细胞层出现最强的p75免疫阳性反应,在其他各层也有较弱的免疫阳性反应. 在胚胎6、7月的视网膜中,主要由Müller细胞的终足构成的内界膜上出现了比较强的p75表达. p75在人胚胎视网膜中的分布情况与大鼠视网膜中很类似,主要表达在Müller细胞, 在神经节细胞上也可能有表达.  相似文献   

10.
The sequence of morphological differentiation of Müller cells in the chick retina was investigated in relation to the differentiation of the retinal neurons using the Golgi method. From the beginning of differentiation, the Müller cell develops spurs and lateral processes. Some of these glial processes become transformed into accessory prolongations of the Müller cell. From the 17th or 18th day of incubation, the morphology of the Müller cells is similar to that of the adult retina. On the basis of their inner prolongation, two types of Müller cells were identified. The first type, with diffuse and abundant descending processes, is identical to that described classically. The second type is a cell characterized by sparse and scanty inner ramifications. This report also describes electron microscopic observations of Müller cells and their enwrapping relationship with the axons of the optic nerve fiber layer.  相似文献   

11.
Peripapillary glial cells (PPGCs) are a peculiar macroglia in avian species, located in the central retina adjacent to the optic nerve head. PPGCs have a similar shape and orientation to Müller cells, which traverse the entire layer of the retina; however, there are differences in protein expression between the two cell types. In the present study, we first demonstrated that PPGCs expressed αB-crystallin, which is not expressed in Müller cells, during retinal development. αB-crystallin was first faintly expressed in PPGCs of the E5 retina, adjacent to the optic nerve head. Further, αB-crystallin was exclusively expressed in PPGCs up to E14. The shape of these cells was bipolar with vitread and ventricular processes. The vitread processes of αB-crystallin+ PPGCs became finer at E18. Double labeling analysis clearly demonstrated that only vimentin+ or GFAP+ astrocytes were located in the optic nerve head and were demarcated from the retina by αB-crystallin+ PPGCs. Furthermore, we determined that αB-crystallin+ PPGCs, with a number of processes, completely wrapped the optic nerve head and were densely located in the junction of the optic nerve head and the retina in a whole mount preparation and in vertical-sectioned retinae. The results of present study, together with reports that retinal astrocytes migrate from the optic nerve head, suggest that PPGCs prevent astrocytes from migrating into the retina in avian species.  相似文献   

12.
To generate monoclonal antibodies, immunogen fractions were purified from embryonic chick retinae by temperature-induced detergent-phase separation employing Triton X-114. Under reducing conditions, the monoclonal antibody (mAb) 2M6 identifies a protein doublet at 40 and 46 x 10(3) Mr, which appears to form disulfide-coupled multimers. The 2M6 antigen is regulated developmentally during retinal histogenesis and its expression correlates with Müller glial cell differentiation. Isolated glial endfeet and retinal glial cells in vitro were found to be 2M6-positive, identified with the aid of the general glia marker mAb R5. mAb 2M6 does not bind to any other glial cell type in the CNS as judged from immunohistochemical data. Cell-type specificity was further substantiated by employing retinal explant and single cell cultures on laminin in conjunction with two novel neuron-specific monoclonal antibodies. MAb 2M6 does not bind either to neurites or to neuronal cell bodies. Incubation of retinal cells in vitro with bromodeoxyuridine (BrdU) and subsequent immunodouble labelling with mAb 2M6 and anti-BrdU reveal that mitotic Müller cells can also express the 2M6 antigen. To investigate whether Müller cell differentiation depends on interactions with earlier differentiating ganglion cells, transections of early embryonic optic nerves in vivo were performed. This operation eliminates ganglion cells. Müller cell development and 2M6 antigen expression were not affected, suggesting a ganglion-cell-independent differentiation process. If, however, the optic nerve of juvenile chicken was crushed to induce a transient degeneration/regeneration process in the retina, a significant increase of 2M6 immunoreactivity became evident. These data are in line with the hypothesis that Müller glial cells, in contrast to other distinct glial cell types, might facilitate neural regeneration.  相似文献   

13.
In order to investigate the role of glia in relation to factors that affect the expression of beta-amyloid precursor protein (betaAPP) and B cell lymphoma oncogene protein (Bcl-2) in the central nervous tissue, the patterns of expression of betaAPP and Bcl-2 in developing and mature rat retinas were studied immunocytochemically after intravitreal injection of alpha-aminoadipic acid (alpha-AAA), a glutamate analogue and gliotoxin that is known to cause injury of retinal Müller glial cells. In normal developing retinas, betaAPP and Bcl-2 were expressed primarily but transiently in a small number of neurons in the ganglion cell layer during the first postnatal week. Immunoreactivity of betaAPP and Bcl-2 appeared in the endfeet and proximal part of the radial processes of Müller glial cells from the second postnatal week onwards. In rats that received intravitreal injection of alpha-AAA at birth, there was a loss of immunoreactivity to vimentin, and a delayed expressed on betaAPP or Bcl-2 in Muller glial cells until 3-5 weeks post-injection. Immunoreactive neurons were also observed in the inner retina especially in the ganglion cell layer from 5 to 35 days after injection. A significant reduction in numerical density of cells with large somata in the ganglion cell layer was observed in the neonatally injected retinas at P56, which was accompanied by an increased immunostaining in radial processes of Müller glial cells. In contrast, no detectable changes in the expression of betaAPP and Bcl-2 were observed in retina that received alpha-AAA as adults. These results indicate that the gliotoxin alpha-AAA has long lasting effects on the expression of betaAPP and Bcl-2 in Müller glial cells as well as neurons in the developing but not mature retinas. The loss of vimentin and delayed expression of betaAPP and Bcl-2 in developing Müller glial cells suggests that the metabolic integrity of Müller cells was temporarily compromised, which may have adverse effects on developing neurons that are vulnerable or dependent on trophic support from the Müller glial cells.  相似文献   

14.
15.
Mueiller细胞与视网膜功能   总被引:3,自引:0,他引:3  
Mueller细胞是视网膜中的主要胶质细胞。除了一般的支持和营养作用外,近年的许多研究表明,在Mueller细胞和视网膜视风膜神经元之间在着双向的通讯,它们可以直接通过改变细胞外空间神经活性物质的浓度或间接(通过控制神经元的微环境)调制制神经元活动,因此在视网膜功能中起着重要的作用。  相似文献   

16.
NOV/CCN3 is one of the founding members of the CCN (Cyr61 CTGF NOV) family. In the avian retina, CCN3 expression is mostly located within the central region of the inner nuclear layer. As retinal development progresses and this retinal layer differentiates and matures, CCN3 expression forms a dorsal–ventral and a central–peripheral gradient. CCN3 is produced by two glial cell types, peripapillary cells and Müller cells, as well as by horizontal, amacrine, and bipolar interneurons. In retinal neurons and Müller cell cultures, CCN3 expression is induced by activated BMP signaling, whereas Notch signaling decreases CCN3 mRNA and protein levels in Müller cells and has no effect in retinal neurons. In Müller cells, the CCN3 expression detected may thus result from a balance between the Notch and BMP signaling pathways. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

17.
Extracellular nucleotides mediate glia-to-neuron signalling in the retina and are implicated in the volume regulation of retinal glial (Müller) cells under osmotic stress conditions. We investigated the expression and functional role of ectonucleotidases in Müller cells of the rodent retina by cell-swelling experiments, calcium imaging, and immuno- and enzyme histochemistry. The swelling of Müller cells under hypoosmotic stress was inhibited by activation of an autocrine purinergic signalling cascade. This cascade is initiated by exogenous glutamate and involves the consecutive activation of P2Y1 and adenosine A1 receptors, the action of ectoadenosine 5′-triphosphate (ATP)ases, and a nucleoside-transporter-mediated release of adenosine. Inhibition of ectoapyrases increased the ATP-evoked calcium responses in Müller cell endfeet. Müller cells were immunoreactive for nucleoside triphosphate diphosphohydrolases (NTPDase)2 (but not NTPDase1), ecto-5′-nucleotidase, P2Y1, and A1 receptors. Enzyme histochemistry revealed that ATP but not adenosine 5′-diphosphate (ADP) is extracellularly metabolised in retinal slices of NTPDase1 knockout mice. NTPDase1 activity and protein is restricted to blood vessels, whereas activity of alkaline phosphatase is essentially absent at physiological pH. The data suggest that NTPDase2 is the major ATP-degrading ectonucleotidase of the retinal parenchyma. NTPDase2 expressed by Müller cells can be implicated in the regulation of purinergic calcium responses and cellular volume.  相似文献   

18.
Pituitary adenylate cyclase-activating peptide (PACAP) is known to regulate not only neurons but also astrocytes. Here, we investigated, both in vitro and in vivo, the effects of PACAP38 on rat Müller cells, which are the predominant glial element in the retina. Müller cells isolated from juvenile Wistar rats were treated with PACAP38 or PACAP6-38, a PACAP selective antagonist. Cell proliferation was determined by measuring the incorporation of bromodeoxyuridine with ELISA. Interleukin-6 (IL-6) levels in the culture medium were determined by a bioassay using B9 cells, IL-6 dependent hybridoma. In adult Wistar rats, the expression of IL-6 in the retina after intravitreal injection of PACAP38 (10 pmol) was assessed by immunohistochemistry. PACAP38 stimulated IL-6 production in Müller cells at a concentration as low as 10(-12) M, which did not induce cell proliferation. This elevation of IL-6 production was inhibited by PACAP6-38. Radial IL-6 expression was observed throughout the retina at 2 and 3 days after PACAP38 injection. These data demonstrate that Müller cells are one of the target cells for PACAP. IL-6, which is released from Müller cells with stimulation by PACAP, may play a significant role in the retina.  相似文献   

19.
We determined the mechanisms of glutamate and ATP release from murine retinal glial (Müller) cells by pharmacological manipulation of the vascular endothelial growth factor (VEGF)- and glutamate-induced inhibition of cellular swelling under hypoosmotic conditions. It has been shown that exogenous glutamate inhibits hypoosmotic swelling of rat Müller cells via the induction of the release of ATP (Uckermann et al. in J Neurosci Res 83:538–550, 53). VEGF was shown to inhibit hypoosmotic swelling of rat Müller cells by inducing the release of glutamate (Wurm et al. in J Neurochem 104:386–399, 55). The swelling-inhibitory effect of VEGF in murine Müller cells was blocked by an inhibitor of vesicular exocytosis, by a modulator of the allosteric site of vesicular glutamate transporters, and by inhibitors of phospholipase C and protein kinase C. The swelling-inhibitory effect of glutamate in murine Müller cells was prevented by inhibitors of connexin hemichannels. The effects of both VEGF and glutamate were blocked by tetrodotoxin and by an inhibitor of T-type voltage-gated calcium channels. Murine Müller cells display connexin-43 immunoreactivity. The data suggest that Müller cells of the murine retina may release glutamate by vesicular exocytosis, whereas ATP is released through connexin hemichannels.  相似文献   

20.
Regulation of potassium levels by Müller cells in the vertebrate retina   总被引:2,自引:0,他引:2  
The membrane properties of Müller cells, the principal glial cells of the vertebrate retina, have been characterized in a series of physiological experiments on freshly dissociated cells. In species lacking a retinal circulation (tiger salamander, rabbit, guinea pig), the end-foot of the Müller cell has a much higher K+ conductance than do other cell regions. In species with retinal circulation (mouse, cat, owl monkey) the K+ conductance of the end-foot is greater than the conductance of the proximal process of the cell. In these species, however, the K+ conductance of the soma and distal process is equal to, or greater than, the end-foot conductance. Müller cells also possess four voltage-dependent ion channels, including an inward rectifying K+ channel. These membrane specializations may aid in the regulation of extracellular K+ levels by Müller cells in the retina. High end-foot conductance shunts excess K+ out through the end-foot, where it diffuses into the vitreous humor. In vascularized retinae, excess K+ may also be transferred to the ablumenal wall of capillaries, where it could be transported into the blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号