首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
Fluorescent amines, 9-aminoacridine, acridine orange and quinacrine, were used as probes for a pH gradient (deltapH) across gastric microsomal vesicles. Analysis of probe uptake data indicates that 9-aminoacridine distributes across the membrane as a weak base in accordance with the deltapH. On the other hand, acridine orange and quinacrine show characteristics of binding to membrane sites in addition to the accumulation in response to deltapH. A discussion of the advantages and limitations of the probes is presented. Application of these probes to pig gastric microsomal vesicles indicates that that K+-stimulated ATPase is responsible for the transport of H+ into the vesicles and thus develops a deltapH across the membrane. The deltapH generated by the K+-ATPase has a definite requirement for internal K+. The proton gradient can be discharged slowly after ATP depletion or rapidly either by detergent disruption of the vesicles or by increasing their leakiness using both H+ and K+ ionophores. On the other hand, the sole use of the K+ ionophore, valinomycin, stimulates the ATP-induced formation of deltapH by increasing the availability of K+ to internal sites. This stimulation by valinomycin requires the presence of permeable anions like Cl-. Analysis of the Cl- requirement indicates that in the presence of valinomycin the net effect is the accumulation of HCl inside the gastric vesicles. With an external pH of 7.0, the ATP-generated deltapH was calculated to be from 4 to 4.5 pH units. The results are consistent with the hypothesis that the K+-stimulated ATPase drives a K+/H+ exchange across the gastric vesicles. Since other lines of evidence suggest that these gastric microsomes are derived from the tubulovesicular system of the oxyntic cell, the participation of the ATP-driven transport processes in gastric HCl secretion is of interest.  相似文献   

2.
Free radical metabolism of the acridine derivatives, quinacrine and 9-amino-acridine, has been studied using horseradish peroxidase-H2O2 (HRP-H2O2) and prostaglandin-arachidonic acid systems. In the presence of HRP-H2O2 quinacrine rapidly formed a free radical intermediate consisting of three lines which collapsed into a single line with a g-value of 2.0055. Under similar conditions no radical was detected with 9-aminoacridine. In contrast, incubation of either quinacrine or 9-aminoacridine with ram seminal vesicle microsomes and arachidonic acid gave a single line spectrum with g-values of 2.0055. Although no radical could be detected with rat hepatic microsomes, incubation of the acridines resulted in covalent binding to microsomal membranes which was NADPH-dependent. Free radical metabolism and covalent binding may play a significant role in the mutagenic properties of quinacrine and 9-aminoacridine.  相似文献   

3.
The finding that several derivatives of 9-aminoacridine were deacridinylated in the presence of primary aliphatic amines during the solid phase synthesis of acridine-peptide conjugates prompted us to investigate the acridin-9-yl moiety transfer from a relatively low-molecular acridine source to a high-molecular carrier. The hydrophobic polymer was used as a model of hydrophobic core of biologically active proteins. While the alpha-amino group in the peptide was found to play the role of weak acridine acceptor, the epsilon-amino group of lysine appeared to serve as a moderate acceptor of acridine moiety. The covalent modification of the lysine residues side chain in the hydrophobic core of prion protein aggregates could thus explain the discrepancy between the ability of the acridine drug quinacrine to reduce efficiently the incidence of prion protein in cell culture and its weak prion binding affinity.  相似文献   

4.
We have quantitatively examined the unwinding angles for the complexes of a related series of acridine and quinoline derivatives with DNA. Ethidium bromide was used as a control for determining superhelix densities at different ionic strengths. Relative to ethidium, 9-aminoacridine and quinacrine had an essentially constant unwinding angle of approximately 17 degrees at all ionic strengths tested. The apparent unwinding angle for chloroquine and 9-amino-1,2,3,4-tetrahydroacridine was found to be ionic strength dependent, increasing with increasing ionic strength. This suggests that competitive nonintercalative binding at low ionic strengths causes an apparent lowering of the quinoline unwinding angle. This can also explain why 4-aminoquinaldine, examined at low ionic strength, gives a quite low apparent unwinding angle. Quinacrine along with chloroquinine and 9-aminoacridine approaches a limiting value for their unwinding angle of approximately 17 degrees. 4-aminoquinaldine and 9-amino-1,2,3,4-tetrahydroacridine could not be examined at an ionic strength above 0.03 because of their very low equilibrium binding constants.  相似文献   

5.
(1) The pH dependence of the fluorescence intensities of 9-aminoacridines associated with energized submitochondrial membranes suggests that a mechanism(s) other than protonation of the dye molecules, as is the case with quinacrine, is responsible for the energy-linked fluorescence decreases of 9-aminoacridine and 9-amino-3-chloro-7-methoxyacridine (9-ACMA). (2) That the fluorescence polarization of quinacrine associated with submitochondrial membranes more than doubles upon energization of the membranes is attributed to: (i) the bulky side chain at the 9-position of the acridine moiety which hinders the molecular rotation of quinacrine and (ii) electrostatic forces resulting from the protonation of quinacrine . H+ which induce tight binding between the dye molecules and the membranes. (3) The protonation of quinacrine associated with energized membranes, from the monoprotonated to the diprotonated species, takes place in the membrane phase, as evidence by the observation of a 'break' in both the Arrhenius plot of the respiratory rate and the plot of fluorescence polarization as a function of temperature. (4) That the measured fluorescence polarization of both 9-aminoacridine and 9-ACMA associated with both energized and nonenergized membranes is nearly zero suggests that the emitting species of these dye molecules are those in the 'free' form and that the membrane-bound molecules have formed nonfluorescent complexes; consequently no polarization can be measured.  相似文献   

6.
Thrombin causes a dose-dependent cytoplasmic alkalinization of normal human platelets. The pH probe 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) permits an easier and more accurate quantitation of the kinetics of this change previously measured with 9-aminoacridine and 6-carboxyfluorescein (6-CF). We report here a modification of the previously published 6-CF technique and confirm the thrombin-induced cytoplasmic pH change in the human platelet using a second fluorescein derivative, BCECF. Maximal thrombin stimulation raises the resting cytoplasmic pH of the human platelet from 7.0 to 7.25.  相似文献   

7.
Mutagenic activity and DNA intercalation were examined for 9-aminoacridine (9-AA) and its derivatives. Introduction of a nitro group into the 9-AA molecule was found to enhance the activity enormously as was detected by the Ames test. Acetylation of amino group at 9-position of acridine ring inhibited the intercalation, the frameshift activity disappearing. Rat liver S9 converted 9-AA metabolically to 9-amino-2-hydroxyacridine.  相似文献   

8.
In order to identify a photoaffinity probe for 9-aminoacridine frameshift mutagenesis, 20 azido analogs of acridine were synthesized and tested in Ames' Salmonella tester strains, TA1535, TA1537, TA1538 and their corresponding excision-repair-proficient strains TA1975, TA1977, and TA1978, to determine their mutagenicity and toxicity relative to 9-aminoacridine. The substituent-mutagenicity patterns observed for these compounds agree very well with those obtained previously for non-azidoacridines. The results presented here show that the 2-azido-analog of 9-aminoacridine demonstrates biological activity similar to 9-aminoacridine prior to photolytic activation. With light activation, however, the 9-amino-2-azido derivative becomes more effective at producing frameshift mutations characteristics of 9-aminoacridine. Furthemore, this photolytic enhancement of mutagenesis appears to be due to the repairable lesion suggesting that covalent attachment of the drug occurs.  相似文献   

9.
The photodynamically produced mutagenicity and toxicity of 8 acridine compounds were compared in Saccharomyces cerevisiae under resting and growing conditions. Without irradiation none of the acridines induced respiratory-deficient ('petite') colonies, indicative of mitochondrial DNA damage, in resting cells; and only acriflavine and proflavine induced 'petites' in growing cells. Also, without irradiation none of the acridines were significantly toxic or mutagenic for nuclear DNA under resting or growing conditions. However, with irradiation, acriflavine, proflavine, acridine yellow and rivanol became effective 'petite'-inducing mutagens and highly toxic for resting cells, while acriflavine, proflavine, and acridine orange became effective nuclear mutagens for resting cells. Acridine, quinacrine and 9-aminoacridine were not at all biologically effective with irradiation for resting cells. The results presented here indicate that singlet oxygen is generated by a photodynamic mechanism when acriflavine is irradiated, and further, that acridine, quinacrine and 9-aminoacridine are ineffective photosensitizers, because they are incapable of generating singlet oxygen with irradiation.  相似文献   

10.
Summary The aroC321 allele permits positive selection for the detection of a large genetic duplication that arises in the Salmonella typhimurium chromosome by homologous recombination. Strains that contain both aroC321 and the hisC3076 allele were constructed so that the induction of genetic duplications and frameshift mutations in a run of GC base pairs could be studied simultaneously by selecting for tryptophan and histidine prototrophy, respectively. Using these strains, we examined the ability of 9-aminoacridine, quinacrine, four acridine mustards (ICR-170, ICR-191, ICR-372, and quinacrine mustard) and the nitroacridine Entozon to induce genetic duplications and frameshift mutations. Although all these compounds induce reversion of hisC3076, only the four mustards and Entozon are effective as inducers of genetic duplications under identical treatment conditions. The induction of genetic duplications by acridine mustards, like the toxic and mutagenic effects of these compounds, is enhanced by a deficiency for excision repair caused by a deletion through the uvrB gene. The ineffectiveness of 9-aminoacridine and quinacrine in the test for genetic duplications indicates that simple intercalation is sufficient for the mutagenic effect measured with the hisC3076 allele but that the induction of duplications by the acridine mustards and Entozon requires covalent binding of the chemical to DNA.  相似文献   

11.
Substituted 1-nitro-9-aminoacridine derivatives were shown to inhibit RNA and to a lesser extent protein synthesis in cultured human cells. Complex formation between the compounds studied and DNA were considered to be responsible for their cytostatic action. Two types of complexes differing in their binding forces were found. The biological activity of the studied compounds seems not to be dependent on the existence of a positive charge on the acridine ring.  相似文献   

12.
In this study, the detailed DNA sequence specificity of four acridine Pt complexes was examined and compared with that of cisplatin. The DNA sequence specificity was determined in a telomere-containing DNA sequence using a polymerase stop assay, with a fluorescent primer and an automated capillary DNA sequencer. The Pt compounds included an acridine intercalating moiety that was modified to give a 9-aminoacridine derivative, a 7-methoxy-9-aminoacridine derivative, a 7-fluoro-9-aminoacridine derivative and a 9-ethanolamine-acridine derivative. Compared with cisplatin, the DNA sequence specificity was most altered for the 7-methoxy-9-aminoacridine compound, followed by the 9-aminoacridine derivative, the 7-fluoro-9-aminoacridine compound and the 9-ethanolamine-acridine derivative. The DNA sequence selectivity for the four acridine Pt complexes was shifted away from runs of consecutive guanines towards single guanine bases, especially 5′-GA dinucleotides and sequences that contained 5′-CG. The sequence specificity was examined in telomeric and non-telomeric DNA sequences. Although it was found that telomeric DNA sequences were extensively damaged by the four acridine Pt complexes, there was no extra preference for telomeric sequences.  相似文献   

13.
Quinacrine, a fluorescent amphipathic amine, has been used as a vital fluorescent probe to visualize vesicular storage of ATP in the field of purinergic signaling. However, the mechanism(s) by which quinacrine represents vesicular ATP storage remains to be clarified. The present study investigated the validity of the use of quinacrine as a vial fluorescent probe for ATP-storing organelles. Vesicular nucleotide transporter (VNUT), an essential component for vesicular storage and ATP release, is present in very low density lipoprotein (VLDL)-containing secretory vesicles in hepatocytes. VNUT gene knockout (Vnut−/−) or clodronate treatment, a VNUT inhibitor, disappeared vesicular ATP release (Tatsushima et al., Biochim Biophys Acta Molecular Basis of Disease 2021, e166013). Upon incubation of mice’s primary hepatocytes, quinacrine accumulates in a granular pattern into the cytoplasm, sensitive to 0.1-μM bafilomycin A1, a vacuolar ATPase (V-ATPase) inhibitor. Neither Vnut−/− nor treatment of clodronate affected quinacrine granular accumulation. In vitro, quinacrine is accumulated into liposomes upon imposing inside acidic transmembranous pH gradient (∆pH) irrespective of the presence or absence of ATP. Neither ATP binding on VNUT nor VNUT-mediated uptake of ATP was affected by quinacrine. Consistently, VNUT-mediated uptake of quinacrine was negligible or under the detection limit. From these results, it is concluded that vesicular quinacrine accumulation is not due to a consequence of its interaction with ATP but due to ∆pH-driven concentration across the membranes as an amphipathic amine. Thus, quinacrine is not a vital fluorescent probe for vesicular ATP storage.  相似文献   

14.
Acridine dye binding by cells of Escherichia coli has been characterized in terms of a number of parameters. There is a temperature-dependent, readily reversible binding of acriflavine which occurs to a greater extent with acridine-sensitive mutants of E. coli K-12 than with wild-type E. coli B or K-12. There is an essentially irreversible internal binding of acriflavine which occurs when the cellular permeability barriers are destroyed or altered by heat-treatment, elevated pH, treatment with toluene or phenethyl alcohol, or infection with bacteriophage T2 or T4. Both the reversible and the irreversible binding of acridines occurs more effectively with the acridine dye acriflavine than with the related dye proflavine, and still less effectively with 9-aminoacridine and quinacrine. These properties of acridine binding can be correlated with various inhibitory effects of the dyes on the cells.  相似文献   

15.
Interactions of several acridine dyes with DNA from different species were studied by measuring fluorescence lifetimes in the 2–30-nsec range, using the single-photon counting technique, and by measuring fluorescence quantum yields in the steady state. The results confirm the existence of two principal site classes, one in which the dye fluorescence is quenched by interaction with guanine and another in which fluorescence results from the hydrophobic environment of the A·T base pairs. The emitting sites are found, in some cases, to exhibit fluorescent decay curves which can be resolved into two exponential components corresponding to a short and to a long lifetime. The deviation from one exponential component is particularly clear with rivanol, 9-aminoacridine, and quinacrine, with which one component is two or three times longer than the other. The relative proportion of these two components depends only slightly on the DNA base composition and does not depend on the nature of the acridine derivatives. We postulate that this lifetime heterogeneity corresponds to the two discrete steps in the complex formation elucidated by kinetic studies: the first step corresponds to a semi-intercalated, or “external,” dye with a short fluorescence lifetime and the second step corresponds to a totally intercalated dye with a long lifetime. In this model, we assumed that a transient opening of the site near a semi-intercalated dye induces solvent diffusion which in turn is responsible for its short-lived fluorescence.  相似文献   

16.
The induction of chromosomal aberrations by 5 derivatives of nitro-9-aminoacridine in V79 Chinese hamster cells was observed. The clastogenic activity of the compounds tested depended on the position of the NO2 group in the acridine ring. The strongest clastogens were derivatives with NO2 in position 1. The remaining derivatives placed in decreasing order of clastogenic activity were: 3-nitro, 4-nitro and 2-nitro. In addition, 2-nitro and 3-nitro derivatives produced hyperdiploid/polyploid metaphases.  相似文献   

17.
Measurements were made of the difference in the electrochemical potential of protons (delta-mu H+) across the membrane of vesicles restituted from the ATPase complex (TF0.F1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential (delta psi) and pH difference across the membrane (delta pH), respectively. In the presence of Tris buffer the maximal delta psi ans no delta pH were produced, while in the presence of the permeant anion NO-3 the maximal delta pH and a low delta psi were produced by the addition of ATP. When thATP concentration was 0.24 mm, the delta psi was 140-150 mV (positive inside) in Tris buffer, and the delta pH was 2.9-3.5 units (acidic inside) in the presence of NO-3. Addition of a saturating amount of ATP produced somewhat larger delta psi and delta pH values, and the delta -muH+attained was about 310mV. By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4-5 during ATP hydrolysis. The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

18.
The photosensitizing efficiency of six dyes--proflavine, 9-aminoacridine, ethidium bromide, thiopyronine, pyronine and acridine red--have been compared on the basis of the inactivation of sensitized T4 phage caused by light irradiation. This reaction was only measurable after diffusion of the dye through the phage capsid and was not observed in the presence of either chloroquine or quinacrine; it followed a single-hit kinetics as a function of the irradiation time. With each dye, a double reciprocal plot of the inactivation constant versus the dye concentration present gave rise to a linear relationship. From this relation, parameters were deduced which expressed the relative photosensitizing efficiencies. Dye-binding to the phages was measured and the proflavine-mediated inactivation appeared to be related to the amount of strongly bound molecules. Such a conclusion could not be reached in the case of 9-aminoacridine and ethidium bromide, which were much less efficient photosensitizers than proflavine, but which were also strongly bound to the phages. Thiopyronine was weakly bound to the phages; it had, however, the highest photosensitizing activity observed. These results indicate that various mechanisms are involved when the phage photosensitization is due to one dye or another.  相似文献   

19.
Abstract

Guanidinobenzoatase is a trypsin-like protease capable of degrading fibronectin. An inactive form of guanidinobenzoatase is present on the surface of benign naevus cells and these cells stain very weakly with 9-aminoacridine, a known competitive inhibitor of guanidinobenzoatase. Malignant melanoma and metastatic malignant melanoma cells exhibit strong surface staining with 9-aminoacridine and also exhibit strong staining of cytoplasmic RNA with acridine orange. These simple fluorescent techniques have been used to distinguish benign naevus cells from malignant melanoma cells in human skin sections. This difference in cell surface staining with 9-aminoacridine has been demonstrated to be caused by the presence or absence of an inhibitor. The inhibitor can be displaced from the cell surface enzyme and then replaced by an affinity purified inhibitor obtained from fresh liver homogenates. It is proposed that the inhibition or control of cell surface guanidinobenzoatase may be one of the regulatory mechanisms by which benign naevus cells are prevented from developing into malignant melanoma cells.  相似文献   

20.
Guanidinobenzoatase is a trypsin-like protease capable of degrading fibronectin. An inactive form of guanidinobenzoatase is present on the surface of benign naevus cells and these cells stain very weakly with 9-aminoacridine, a known competitive inhibitor of guanidinobenzoatase. Malignant melanoma and metastatic malignant melanoma cells exhibit strong surface staining with 9-aminoacridine and also exhibit strong staining of cytoplasmic RNA with acridine orange. These simple fluorescent techniques have been used to distinguish benign naevus cells from malignant melanoma cells in human skin sections. This difference in cell surface staining with 9-aminoacridine has been demonstrated to be caused by the presence or absence of an inhibitor. The inhibitor can be displaced from the cell surface enzyme and then replaced by an affinity purified inhibitor obtained from fresh liver homogenates. It is proposed that the inhibition or control of cell surface guanidinobenzoatase may be one of the regulatory mechanisms by which benign naevus cells are prevented from developing into malignant melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号