首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beneficial effects of l-carnitine perfusion on energy metabolism and coenzyme A acylation were studied in isolated hearts from control and diabetic rats. All hearts were perfused at a constant flow rate with a glucose/albumin buffer which contained 2.0 mM palmitate. 31P-NMR was utilized to assess sequential phosphocreatine and ATP metabolism during 1 h of recirculation perfusion. l-Carnitine (5.0 mM final concentration) was added after 12 min of baseline recirculation perfusion. Frozen samples were taken after 1 h of recirculation perfusion for spectrophotometric analysis of high-energy phosphates and the free and acylated fractions of coenzyme A. l-Carnitine perfusion of diabetic hearts attenuated or prevented the reduction of ATP observed in untreated diabetic hearts. It also attenuated the accumulation of long-chain fatty-acyl coenzyme A. Although l-carnitine improved myocardial function in diabetic hearts, this was independent of any direct effect on physiological indices. Thus, the salutory effect of acute perfusion with l-carnitine on energy metabolism in the isolated perfused diabetic rat heart appears to be a direct effect on lipid metabolism.  相似文献   

2.
The location of carnitine acetyltransferase and carnitine octanoyltransferase on the inner and outer surfaces of rat liver microsomes was investigated. Latency of mannose-6-phosphate phosphatase showed that the microsomes were 90–94% sealed. All of the octanoyltransferase is associated with the cytosolic face, while the acetyltransferase is distributed between the cytosolic face (68–73%) and the lumen face (27–32%) of the endoplasmic reticulum membrane. Small amounts of trypsin inhibit the carnitine octanoyltransferase equally in either sealed or permeable microsomes but the acetyltransferase of sealed microsomes is stimulated. Large amounts of trypsin inhibit all transferase activities by about 60%, except for acetyltransferase of sealed microsomes. Other studies show that 0.1% Triton X-100 partially inhibits carnitine octanoyltransferase of microsomes but does not inhibit the acetyltransferase or any of the mitochondrial carnitine acyltransferase.  相似文献   

3.
The measurement of acyl-CoA dehydrogenase activities is an essential part of the investigation of patients with suspected defects in fatty acid oxidation. Multiple methods are available for the synthesis of the substrates used for measuring acyl-CoA dehydrogenase activities; however, the yields are low and the products are used without purification. In addition, the reported characterization of acyl-CoAs focuses on the CoA moiety, not on the acyl group. Here we describe the synthesis of three medium-chain acyl-CoAs from mixed anhydrides of the fatty acids using an aqueous-organic solvent mixture optimized to obtain the highest yield. First, cis-4-decenoic acid and 2,6-dimethylheptanoic acid were prepared (3-phenylpropionic acid is commercially available). These were characterized by gas chromatography/mass spectrometry (GC/MS), 1H nuclear magnetic resonance (NMR), and 13C NMR. Then cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA were synthesized. These were then purified by ion exchange solid-phase extraction using 2-(2-pyridyl)ethyl-functionalized silica gel, followed by reversed-phase semipreparative high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The purified acyl-CoAs were characterized by analytical HPLC-UV followed by data-dependent tandem mass spectrometry (MS/MS) analysis on the largest responding MS mass (HPLC-UV-MS-MS/MS) and 13C NMR. The yields of the purified acyl-CoAs were between 75% and 78% based on coenzyme A trilithium salt (CoASH). Acyl-CoA dehydrogenase activities were measured in rat skeletal muscle mitochondria using, as substrates, the synthesized cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA. These results were compared with the results using our standard substrates butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA.  相似文献   

4.
A 31P nuclear magnetic resonance saturation transfer method was used to measure the temperature dependence of creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts. A decrease in temperature from 37 to 4°C lowered the observed steady-state fluxes by about 80%. These data were used in conjunction with calculated changes in substrate concentrations with temperature to estimate the activation energy for creatine kinase in situ. The apparent activation energy of 42 kJ/mol agrees reasonably well with the range of literature values for the enzyme in vitro. This demonstrates that the reaction is not diffusion-limited in situ and that extraction and dilution of the enzyme for study in vitro does not alter fundamental kinetic properties of the enzyme exhibited in the intact tissue.  相似文献   

5.
Abstract: In the present study, we investigated the existence of a binding site for l -carnitine in the rat brain. In crude synaptic membranes, l -[3H]carnitine bound with relatively high affinity (KD = 281 nM) and in a saturable manner to a finite number (apparent Bmax value = 7.3 pmol/mg of protein) of binding sites. Binding was reversible and dependent on protein concentration, pH, ionic strength, and temperature. Kinetic studies revealed a Koff of 0.018 min?1 and a Kon of 0.187 × 10?3 min?1 nM?1. Binding was highest in spinal cord, followed by medulla oblongata-pons ≥ corpus striatum ≥ cerebellum = cerebral cortex = hippocampus = hypothalamus = olfactory bulb. l -[3H]Carnitine binding was stereoselective for the l -isomers of carnitine, propionylcarnitine, and acetylcarnitine. The most potent inhibitor of l -[3H]carnitine binding was l -carnitine followed by propionyl-l -carnitine. Acetyl-l -carnitine and isobutyryl-l -carnitine showed an affinity ~500-fold lower than that obtained for l -carnitine. The precursor γ-butyrobetaine had negligible activity at 0.1 mM. l -Carnitine binding to rat crude synaptic membrane preparation was not inhibited by neurotransmitters (GABA, glycine, glutamate, aspartate, acetylcholine, dopamine, norepinephrine, epinephrine, 5-hydroxytryptamine, histamine) at a final concentration of 0.1 mM. In addition, the binding of these neuroactive compounds to their receptors was not influenced by the presence of 0.1 mMl -carnitine. Finally, a subcellular fractionation study showed that synaptic vesicles contained the highest density of l -carnitine membrane binding sites whereas l -carnitine palmitoyltransferase activity was undetectable, thus excluding the possibility of the presence of an active site for carnitine palmitoyltransferase. This finding indicated that the localization of the l -[3H]carnitine binding site should be essentially presynaptic.  相似文献   

6.
Several studies have shown that in animals fed fish oils, docosahexaenoic acid (DHA) is incorporated into cardiac phosphatidylcholines (PC) mainly at the expense of arachidonic acid. In this study we were interested in examining if the enzymatic system involved in the remodeling of membrane PC presented any selectivity for DHA in rat heart. The enzymes that were studied from sequential incubations carried out in parallel, were acyl-CoA synthetase (EC 6.2.1.3) and acyl-CoA:lysophosphatidylcholine acyltransferase (EC 2.3.1.23) (ACLAT). The heart preparations examined were homogenates of whole heart and of purified cultured rat ventricular myocytes.Results showed that ACLAT tended to preferentially incorporate into PC the polyunsaturated fatty acids of the n-6 series (+30%) rather than those of the n-3 series. DHA, however, inhibited the incorporation of arachidonic acid (AA) into PC by 50% at a molar ratio (DHA/AA) of 1.5. This phenomenon seems to be related to the competitive inhibition exerted by DHA on the thio-esterification of AA, a reaction catalyzed by acyl-CoA synthetase. This inhibitory effect appears to be dependent on the kinetic properties of the acyl-CoA synthetase toward DHA which, among the fatty acids examined, exhibited the lowest apparent Km and Vmax.It is suggested that the intracellular pool of DHA-CoA is the determinant species in altering the DHA composition of cardiac PC in animals given fish oils.  相似文献   

7.
Etoposide is a chemotherapeutic agent that induces cell death by blocking topoisomerase II catalytic function. Although etoposide is effective in the treatment of cancer, it also causes the death of normal proliferating cells, including male germ cells. Administration of etoposide during the prepubertal phase causes diturbances in several testicular morphometric parameters and in Sertoli cells. Cytoprotection of the seminiferous epithelium is the only means of preserving potential male reproduction in prepubertal cancer patients. Carnitine, an amino acid naturally present in normal cells, is a promising cryoprotectant as it is concentrated in the epididymis and promotes sperm maturation. We have therefore investigated whether carnitine protects rat testes against etoposide and, thus, improves fertility in adulthood. Our results suggest that carnitine partially protects the testis against damage caused by etoposide, although the mechanism by which it happens remains unknown. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
31P-NMR has been used to quantify inorganic phosphate (Pi) and high-energy phosphates in the isolated, functioning perfused rat kidney, while monitoring oxygen consumption, glomerular filtration rate and sodium reabsorption. Compared with enzymatic analysis, 100% of ATP, but only 25% of ADP and 27% of Pi are visible to NMR. This is indicative that a large proportion of both ADP and Pi are bound in the intact kidney. NMR is measuring free, and therefore probably cytosolic concentrations of these metabolites. ATP synthesis rate, measured by saturation transfer NMR shows the P:O ratio of 2.45 for the intact kidney. This is close to the theoretical value, suggesting the NMR visible pool is that which is involved in oxidative phosphorylation. The energy cost of Na transport, calculated from the theoretical Na:ATP of 3.0 exceeded the measured rate of ATP synthesis. Instead, Na:ATP for active transport in the perfused kidney was 12. Since the phosphorylation potential ([ATP][ADP]×[Pi]) by NMR was 10 000 M?1, the free-energy of ATP hydrolysis was 52 kJ/mol. Using this figure, the rate of ATP hydrolysis observed could fully account for the observed rate of sodium reabsorption.  相似文献   

9.
In this paper, we present a new method for measurement of long-chain acyl-CoA dehydrogenase (LCAD) activities in cultured skin fibroblasts. The method is based upon gas chromatographic/mass spectrometric determination of 3-OH-hexadecanoic acid formed during incubation of fibroblasts in a medium containing palmitoyl-CoA and crotonase, to convert the enoyl-CoA ester produced into the 3-hydroxyacyl-CoA ester. The validity of the method demonstrated by the finding of a full deficiency of LCAD in fibroblasts from three patients with an established deficiency of LCAD.  相似文献   

10.
    
A new approach to the study of glucose phosphorylation in brain slices is described. It is based on timed incubation with nonradioactive 2-deoxyglucose (DG), after which the tissue levels of DG and 2-deoxyglucose-6-phosphate (DG6P) are measured separately with sensitive enzymatic methods applied to specific small subregions. The smallest samples had dry weights of approximately 0.5 microgram. Direct measurements in different regions of hippocampal slices showed that within 6 min after exposure to DG, the ratios of DG to glucose in the tissue were almost the same as in the incubation medium, which simplifies the calculation of glucose phosphorylation rates and increases their reliability. Data are given for ATP, phosphocreatine, sucrose space, and K+ in specific subregions of the slices. DG6P accumulation proceeded at a constant rate for at least 10 min, even when stimulated by 10 mM glutamate in the medium. The calculated control rate of glucose phosphorylation was 2 mmol/kg (dry weight)/min. In the presence of 10 mM glutamate it was twice as great. The response to 10 mM glutamate of different regions of the slice was not uniform, ranging from 164% of control values in the molecular layer of CA1 to 256% in the stratum radiatum of CA1. There was a profound fall in phosphocreatine levels (75%) in response to 10 mM glutamate despite a 2.4-fold increase in glucose phosphorylation. Even in the presence of 1 mM glutamate, the increase in glucose phosphorylation (50%) was not great enough to prevent a significant drop in phosphocreatine content.  相似文献   

11.
Membrane proteins play an important role in cellular function. However, their analysis by mass spectrometry often is hindered by their hydrophobicity and/or low abundance. In this article, we present a method for the mass spectrometric analysis of membrane proteins based on the isolation of the resident membranes, isolation of the proteins by gel electrophoresis, and electroelution followed by enzymatic digestion by both trypsin and proteinase K. With this method, we have achieved 82-99% sequence coverage for the membrane proteins carnitine palmitoyltransferase-I (CPT-I), long-chain acyl-CoA synthetase (LCAS), and voltage-dependent anion channel (VDAC), isolated from rat liver mitochondrial outer membranes, including the transmembrane domains of these integral membrane proteins. This high sequence coverage allowed the identification of the isoforms of the proteins under study. This methodology provides a targeted approach for examining membrane proteins in detail.  相似文献   

12.
We assessed the effect of streptozotocin-diabetes on in vivo collagen metabolism in skin, aorta and intestine by injecting [3H]proline into rats, 20 days after administering the diabetogen, streptozotocin. One day after [3H]proline injection, diabetic and control animals were killed, their tissues analyzed for both 3H-labeled and unlabeled hydroxyproline and results expressed per entire tissue. Thereby, the effect of diabetes on net collagen synthesis and tissue collagen mass, respectively, was evaluated.Diabetes resulted in a lower content of [3H]collagen in skin and aorta, suggesting decreased net collagen synthesis. This decrease in net synthesis was accompanied by a decrease of collagen mass in skin, whereas aortic collagen mass was unaffected. Consequently, an acceleration of collagen degradation in skin is postulated to have accompanied the expected depression of collagen synthesis; alterations of the physiochemical properties of skin from diabetic rats support this interpretation. For intestine, both net collagen synthesis and mass increased in diabetic rats, reflecting increased collagen synthesis—possibly associated with polyphagy.In conclusion, with regard to collagen metabolism, representative connective tissues respond differently to experimental diabetes, and we suggest that this insight will be useful in future studies aimed at understanding the pathophysiology of connective tissues affected by diabetes.  相似文献   

13.
The levels of activity of four serum esterases were measured in control and streptozotocin-diabetic rats for a period of 6 months. Pseudocholinesterase activity was significantly elevated in the diabetic rats at all points tested, reaching 250% of control activity at 6 months. Levels of paraoxonase activity progressively decreased with time in the diabetic rats, being 36% lower than in controls at 6 months. No significant differences in either serum arylesterase or carboxylesterase activity between control and diabetic rats were observed.  相似文献   

14.
The distribution of glutamate and aspartate and the mitochondrial membrane potential (Δψ) were studied in isolated rat heart mitochondria and in the intact perfused rat heart. The diffusion potential imposed by the glutamate-aspartate exchange through mediation of the electrogenic glutamate-aspartate translocator attained a value close to the mitochondrial Δψ measured from the distribution of triphenylmethylphosphonium ion (TPMP+) both in isolated mitochondria and in intact myocardium. Distributions of the Δψ probe and metabolites were determined by subcellular fractionation of the heart muscle in a non-aqueous medium. The results indicate that the glutamate-aspartate translocator is in near equilibrium in the myocardium. The diffusion potential of the glutamate-aspartate exchange, and the mitochondrial/cytosolic difference in the redox potentials of the free NAD+/NADH pools are equal allowing for experimental error. These data obtained from intact tissue can therefore be interpreted as supporting the notion of the transmembrane uphill transport of reducing equivalent from the cytosolic free NAD+/NADH pool being driven by the malate-aspartate cycle energized by the mitochondrial Δψ.  相似文献   

15.
In order to further investigate the mechanism regulating the control of mitochondrial respiration by thyroid hormones, the effect of the hyperthyroidism on the kinetic characteristics of cytocrome c oxidase in rat heart mitochondria was studied. Mitochondrial preparations from both control and hyperthyroid rats had equivalent Km values for cytochrome c, while the maximal activity of cytochrome oxidase was significantly increased (by around 30%) in mitochondrial rats. This enhanced activity of cytochrome oxidase was associated to a parallel increases in mitochondrial State 3 respiration. The hormone treatment resulted in a decrease in the flux control coefficient of the oxidase. The enhanced activity of cytochrome oxidase in hyperthyroid rats does not appear to be dependent on an increases in the mass of this enzyme complex in that the heme aa3 content was equivalent in both hyperthyroid and control preparations. The Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria from hyperthyroid rats as compared with control rats in the breakpoint of the biphasic plot is shifted to a lower temperature. Cardiolipin content was significantly increased in mitochondrial preparations from hyperthyroid rats, while there were no significant alterations in the fatty acid composition of cardiolipin of control and hyperthyroid preparations. The results support the conclusion that the enhanced cytochrome oxidase activity in heart mitochondrial preparations from hyperthyroid rats is due to a specific increase in the content of cardiolipin.  相似文献   

16.
    
Rat heart mitochondria were isolated and forced in a well-defined metabolic state. After freeze-fracturing, the intramembrane particle dimension and density on both fracture faces of the inner mitochondrial membrane were measured. No significant differences could be calculated between the diameter of the membrane particles in the five different states. However, the particle density on the fracture faces of the inner mitochondrial membrane in the condensed configuration is significantly smaller than in the orthodox configuration on the 99.5% level of confidence. These results are compared with the literature, where conflicting data have been published about these particle densities.  相似文献   

17.
Ferricyanide was reduced to ferrocyanide by the perfused rat heart at a linear rate of 78 nmol/min per g of heart (non-recirculating mode). Ferricyanide was not taken up by the heart and ferrocyanide oxidation was minimal (3 nmol/min per g of heart). Perfusate samples from hearts perfused without ferricyanide did not reduce ferricyanide. A single high-affinity site (apparent Km=22 μM) appeared to be responsible for the reduction. Perfusion of the heart with physiological medium containing 0.5 mM ferricyanide did not alter contractility, biochemical parameters or energy status of the heart. Perfusate flow rate and perfusate oxygen concentration exerted opposing effects on the rate of ferricyanide reduction. A net decreased reduction rate resulted from a decreased perfusion flow rate. Thus, the rate of supply of ferricyanide dominated over the stimulatory effect of oxygen restriction; the latter effect only becoming apparent when the oxygen concentration was lowered at a high perfusate flow rate. Whereas glucose (5 mM) increased the rate of ferricyanide reduction, pyruvate (2 mM), acetate (2 mM), lactate (2 mM) and 3-hydroxybutyrate (2 mM) each had no effect. Insulin (3 nM), glucagon (0.5 μM), dibutyryl cyclic AMP (0.1 mM) and the β-adrenergic agonist ritodrine (10 μM) also had no effect, however the α1-adrenergic agonist, methoxamine (10 μM), produced a net increase in the rate of ferricyanide reduction. It is concluded that a trans-plasma membrane electron efflux occurs in perfused rat heart that is sensitive to oxygen supply, glucose, perfusion flow rate, and the α-adrenergic agonist methoxamine.  相似文献   

18.
In rats fed a high-protein diet, the branched-chain 2-oxo-acid dehydrogenase complex in liver was essentially fully acitve and its activity state was unaffected by subsequent starvation for 48 h. Feeding with a low-protein diet led to a decrease in the activity state which was essentially reversed by 48 h of starvation. In heart, the enzyme was primarily inactive (activity state 18%) in rats fed a high-protein diet, with both low-protein diet and starvation leading to a further decrease in the activity state.  相似文献   

19.
Phosphocreatine production catalyzed by a cytosolic fraction from cardiac muscle containing all glycolytic enzymes and creatine kinase in a soluble form has been studied in the presence of creatine, adenine nucleotides and different glycolytic intermediates as substrates. Glycolytic depletion of glucose, fructose 1,6-bis(phosphate) and phosphoenolpyruvate to lactate was coupled to efficient phosphocreatine production. The molar ratio of phosphocreatine to lactate produced was close to 2.0 when fructose 1,6-bis(phosphate) was used as substrate and 1.0 with phosphoenolpyruvate. In these processes the creatine kinase reaction was not the rate-limiting step: the mass action ratio of the creatine kinase reaction was very close to its equilibrium value and the maximal rate of the forward creatine kinase reaction exceeded that of glycolytic flux by about 6-fold when fructose 1,6-bis(phosphate) was used as a substrate. Therefore, the creatine kinase raction was continuously in the state of quasiequilibrium and the efficient synthesis of phosphocreatine observed is a result of constant removal of ADP by the glycolytic system at an almost unchanged level of ATP ([ATP] ? [ADP]), this leading to a continuous shift of the creatine kinase equilibrium position.When phosphocreatine was added initially at concentrations of 5–15 mM the rate of the coupled creatine kinase and glycolytic reactions was very significantly inhibited due to a sharp decrease in the steady-state concentration of ADP. Therefore, under conditions of effective phosphocreatine production in heart mitochondria, which maintain a high phosphocreatine: creatine ratio in the myoplasm in vivo, the glycolytic flux may be suppressed due to limited availability of ADP restricted by the creatine kinase system. The possible physiological role of the control of the glycolytic flux by the creatine kinase system is discussed.  相似文献   

20.
Abstract: Phosphocreatine, ATP, and glucose were severely depleted, and the lactate levels were increased in the paramedian neocortex, dorsal-lateral striatum, and CA1 zone of hippocampus of rats exposed to 30 min of forebrain ischemia. Upon recirculation of the brain, phosphocreatine, ATP, and lactate concentrations recovered to control values in the paramedian neocortex and CA1 zone of hippocampus and to near-control values in the striatum. The phosphocreatine and ATP concentrations then fell and the lactate levels rose in the striatum after 6–24 h, and in the CA1 zone of hippocampus after 24–72 h. The initial recovery and subsequent delayed changes in the phosphocreatine, ATP, and lactate concentrations in the striatum and hippocampus coincided with the onset and progression of morphological injury in these brain regions. The results suggest that cells in these regions regain normal or near-normal mitochondrial function and are viable, in terms of energy production, for many hours before unknown mechanisms cause irreversible neuronal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号