首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The [32P]phosphoamino acids in proteins of first trimester and term-cultured human placentas have been separated and their relative amounts were measured. A significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

2.
Molecular heterogeneity of creatine kinase isoenzymes   总被引:4,自引:0,他引:4  
The [32P]phosphoamino acids in proteins of first trimester and term-cultured human placentas have been separated and their relative amounts were measured. A significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2-4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

3.
Glucagon's effect on the placenta was studied in cultured human term trophoblast and in homogenized term and first-trimester placentas. In studies with cultured term trophoblast, glucagon stimulated the generation of cyclic AMP and estradiol secretion and inhibited placental lactogen secretion. Incubation of homogenates of term and of first-trimester placenta with 0.5 mM dibutyryl cAMP revealed a marked decrease of pyruvate kinase activity. Glucagon produced a similar decrease in first-trimester homogenates, but failed to affect term placentas. The present demonstration of the placenta as a target tissue for glucagon suggests an active contribution of the trophoblast to energy metabolism during pregnancy.  相似文献   

4.
The relationship between fatty acid binding proteins, ATP citrate lyase activity and fatty acid synthesis in developing human placenta has been studied. Fatty acid binding proteins reverse the inhibitory efect of palmitoyl-CoA and oleate on ATP citrate lyase and fatty acid synthesis. In the absence of these inhibitors fatty acid binding proteins activate ATP citrate lyase and stimulate [ 1-14 C] acetate incorporation into placental fatty acids indicating binding of endogenous inhibitors by these proteins. Thus these proteins regulate the supply of acetyl-CoA as well as the synthesis of fatty acids from that substrates. As gestation proceeds and more lipids are required by the developing placenta fatty acid binding protein content, activity of ATP citrate lyase and rate of fatty acid synthesis increase indicating a cause and efect relationship between the demand of lipids and supply of precursor fatty acids during human placental development.  相似文献   

5.
We have reported the presence of insulin-related poly A+RNA sequences in human placenta by RNA to DNA hybridization. In this study we have used a monoclonal antibody to somatomedin C/insulin-like growth factor I (Sm-C/IGF-I) to identify somatomedin-like proteins whose synthesis is directed by placental mRNA. Poly A+RNA from first trimester and term placenta was translated in a cell-free system using micrococcal nuclease-treated reticulocyte-lysate and [35S]methionine as a label. From 2.0×106 cpm of specifically incorporated [35S]methionine labeled protein, an immunoprecipitate with an apparent molecular weight of 14000 represented about 0.1% of total radioactivity in the translational products of poly A+RNA of first trimester placenta. A less prominent band (0.006%) of the same apparent molecular weight was also evident from translational products of term placental mRNAs. This protein could be competed with either acromegalic serum or synthetic Sm-C/IGF-I when added prior to immunoprecipitation. Translational products synthesized from mRNA of term placenta showed a second labeled band of 24000 daltons. This band was less effectively competed by acromegalic serum and not competed with either Sm-C/IGF-I or IGF-II and therefore its identity is uncertain. A protein similar to Sm-C/IGF-I is, therefore synthesized in first trimester placenta and to a lesser extent at term, suggesting developmental changes in Sm-C/IGF-I synthesis. Because Sm-C/IGF-I may act in a paracrine fashion, our findings suggest a role for Sm-C/IGF-I in growth of the placenta during early gestation.  相似文献   

6.
Prenatal development is known to be extremely sensitive to maternal and environmental challenges. In this study, we hypothesize that body growth and lactation during gestation in cattle reduce nutrient availability for the pregnant uterus, with consequences for placental development. Fetal membranes of 16 growing heifers and 27 fully grown cows of the Belgian Blue (BB) breed were compared to determine the effect of body growth on placental development. Furthermore, the fetal membranes of 49 lactating Holstein Friesian (HF) cows and 27 HF heifers were compared to study the impact of dam lactation compared to dam body growth. After parturition, calf birth weight and body measurements of dam and calf were recorded, as well as weight of total fetal membranes, cotyledons and intercotyledonary membranes. All cotyledons were individually measured to calculate both the surface of each individual cotyledon and the total cotyledonary surface per placenta. Total cotyledonary surface was unaffected by breed or the breed×parity interaction. Besides a 0.3 kg lower cotyledonary weight (P=0.007), heifer placentas had a smaller total cotyledonary surface compared with placentas of cows (0.48±0.017 v. 0.54±0.014 m2, respectively, P<0.001). Within the BB breed, fetal membranes of heifers had a 1.5 kg lower total weight and 1.0 kg lower intercotyledonary membrane weight (P<0.005) compared with cows. A cotyledon number of only 91±5.4 was found in multiparous BB dams, while growing BB heifers had a higher cotyledon number (126±6.7, P<0.001), but a greater proportion of smaller cotyledons (<40 cm2). Within the HF breed, no parity effect on intercotyledonary membrane weight, cotyledon number and individual cotyledonary surface was found. Placental efficiency (calf weight/total cotyledonary surface) was similar in HF and BB heifers but significantly higher in multiparous BB compared with multiparous HF dams (106.0±20.45 v. 74.3±12.27 kg/m2, respectively, P<0.001). Furthermore, a seasonal effect on placental development was found, with winter and spring placentas having smaller cotyledons than summer and fall placentas (P<0.001). Main findings of the present study are that lactation and maternal growth during gestation entail a comparable nutrient diverting constraint, which might alter placental development. However, results suggest that the placenta is able to manage this situation through two potential compensation mechanisms. In early pregnancy the placenta might cope by establishing a higher number of cotyledons, while in late gestation a compensatory expansion of the cotyledonary surface is suggested to meet the nutrient demand of the fetus.  相似文献   

7.
Previously, we have demonstrated that the production of prostaglandins by human placental tissue varied with gestational age. In addition, we have shown that placental prostaglandin release was affected by GnRH, and that its response was also dependent on the gestational age of the placenta. Thus, we have studied the effect of a GnRH antagonist ([N-Ac-Pro1, D-p-Cl-Phe2, D-Nal (2)3,6-LHRH, Syntex Research, Palo Alto, CA) on basal prostaglandin release from placentas of 6 to 15 weeks' gestaton and found that this antagonist (1 μg/ml) effects an inhibition of the release of prostaglandin E, prostaglandin F, and 13, 14-dihydro-15-keto-prostaglandin from placentas of 13 and 15 weeks of gestation. This effect was not overridden by GnRH at 10 times the antagonist concentration in the 13-week placental cultures, but was totally reversed by GnRH (10 μg/ml) in the 15-week placental cultures. These data demonstrate that this GnRH antagonist can affect human placental prostaglandin production at 13 to 15 weeks of gestation and indicate that endogenous placental GnRH-like activity may exert a control over placental prostaglandin release at this gestational stage.  相似文献   

8.
Summary The distribution of P-glycoprotein in human placenta has been examined by immunohistochemistry using a battery of monoclonal antibodies (MRK-16, C219 and JSB-1). P-glycoprotein was located on the syncytiotrophoblast microvillus border in first-trimester placentas and some of the placental macrophages (Hofbauer cells) showed weak cytoplasmic staining. In term placentas, however, staining was not observed in the trophoblast but most of the Hofbauer cells displayed strong cytoplasmic staining. In situ hybridization with specific gene probes suggested that both human multidrug resistance genes were expressed in the placenta, although only the multidrug resistance-1 gene product would have been detected by the MRK and JSB-1 antibodies. These results point to distinct functions for P-glycoprotein during the different stages of placental development and indicate that its expression may be under developmental control.  相似文献   

9.
The fetal demand for FFA increases as gestation proceeds, and LPL represents one potential mechanism for increasing placental lipid transport. We examined LPL activity and protein expression in first trimester and term human placenta. The LPL activity was 3-fold higher in term (n = 7; P < 0.05) compared with first trimester (n = 6) placentas. The LPL expression appeared lower in microvillous membrane from first trimester (n = 2) compared with term (n = 2) placentas. We incubated isolated placental villous fragments with a variety of effectors [GW 1929, estradiol, insulin, cortisol, epinephrine, insulin-like growth factor-1 (IGF-1), and tumor necrosis factor-alpha] for 1, 3, and 24 h to investigate potential regulatory mechanisms. Decreased LPL activity was observed after 24 h of incubation with estradiol (1 micro g/ml), insulin, cortisol, and IGF-1 (n = 12; P < 0.05). We observed an increase in LPL activity after 3 h of incubation with estradiol (20 ng/ml) or hyperglycemic medium plus insulin (n = 7; P < 0.05). To conclude, we suggest that the gestational increase in placental LPL activity represents an important mechanism to enhance placental FFA transport in late pregnancy. Hormonal regulation of placental LPL activity by insulin, cortisol, IGF-1, and estradiol may be involved in gestational changes and in alterations in LPL activity in pregnancies complicated by altered fetal growth.  相似文献   

10.
Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [gamma-32P]ATP but not [alpha-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density.  相似文献   

11.
The biosynthesis of placental proteins and placental lactogen (HPL) was studied in vitro in 10–12 week, 16–18 week and term human placenta in the presence and absence of PGE. The highest 14C-leucine incorporation was detected in 10 to 12 weeks old placentas. Addition of PGE to the induction medium depressed the rate of incorporation of 14C-leucine into placental proteins on a dose dependent manner. Placentas most sensitive to this action of PGE were those obtained at 18 weeks gestation followed by placentas at term. In vivo application of PGE for tharapeutic induction of abortions resulted in the marked inhibition of placental protein synthesis in vitro.  相似文献   

12.
The system A amino acid transporter is encoded by three members of the Slc38 gene family, giving rise to three subtypes: Na+-coupled neutral amino acid transporter (SNAT)1, SNAT2, and SNAT4. SNAT2 is expressed ubiquitously in mammalian tissues; SNAT1 is predominantly expressed in heart, brain, and placenta; and SNAT4 is reported to be expressed solely by the liver. In the placenta, system A has an essential role in the supply of neutral amino acids needed for fetal growth. In the present study, we examined expression and localization of SNAT1, SNAT2, and SNAT4 in human placenta during gestation. Real-time quantitative PCR was used to examine steady-state levels of system A subtype mRNA in early (6-10 wk) and late (10-13 wk) first-trimester and full-term (38-40 wk) placentas. We detected mRNA for all three isoforms from early gestation onward. There were no differences in SNAT1 and SNAT2 mRNA expression with gestation. However, SNAT4 mRNA expression was significantly higher early in the first trimester compared with the full-term placenta (P < 0.01). We next investigated SNAT4 protein expression in human placenta. In contrast to the observation for gene expression, Western blot analysis revealed that SNAT4 protein expression was significantly higher at term compared with the first trimester (P < 0.05). Immunohistochemistry and Western blot analysis showed that SNAT4 is localized to the microvillous and basal plasma membranes of the syncytiotrophoblast, suggesting a role for this isoform of system A in amino acid transport across the placenta. This study therefore provides the first evidence of SNAT4 mRNA and protein expression in the human placenta, both at the first trimester and at full term.  相似文献   

13.
We have measured by an exchange procedure the binding of [3H]dexamethasone in cytosol of early (10-13 days) and late (19-22 days) placentas from pregnant rats. Binding was 3-fold higher in late placentas both in the presence of Na2MoO4. We then studied some possible regulatory factors in order to explain differences in binding at both gestational ages. The activity of enzymes compromising the phosphorylation (acid and alkaline phosphatases) or stability (protease) of the receptor were normal or lower in early as opposed to late placenta, discarding these enzymes as leading regulatory factors. Cyclic nucleotides were also studied, in view that they regulate steroid binding in uterus and placenta. Both basal and epinephrine-stimulated production of cAMP were higher in early placenta. cAMP (but not cGMP) inhibited [3H]dexamethasone binding by reducing the number of sites without changing the Kd. Moreover, addition of epinephrine in concentrations that maximally stimulated cAMP, inhibited subsequent binding of [3H]dexamethasone in cytosol. We suggest that cAMP may be a modulator of glucocorticoid binding at the early stages of placental development. The significance of this mechanism may be understood in terms of the opposing effects of cAMP and glucocorticoids on placental progesterone production.  相似文献   

14.
The primate placenta produces a wide variety of hormones throughout gestation that regulate placental function and fetal growth. One such hormone is insulin‐like growth factor‐II (IGF‐II), a peptide implicated in cell division, differentiation, and amino acid transport. IGF‐II concentrations were measured in 23 common marmoset (Callithrix jacchus) term placentas from twin and triplet litters in order to determine whether previously described differences in fetoplacental phenotype such as placental and litter mass and placental surface area were related to differences in endocrine function. IGF‐II was extracted from frozen tissue samples and measured using an enzyme‐linked immunosorbent assay kit designed for human tissue, which was validated for marmoset placenta. IGF‐II concentrations were not related to placental or litter mass, and twin and triplet placentas did not differ in total concentration. However, per individual fetus, triplets were associated with a significant 42% reduction in IGF‐II concentration (P=0.03), and IGF‐II concentration per gram of fetal mass was a third lower in triplet litters. The triplet placenta exhibits a global expansion of the surface area which was contrasted by a per unit area reduction in IGF‐II concentration (r=?0.75, P=0.01), a pattern that explains why twin and triplet placentas overall did not differ in concentration. Per fetus, triplet pregnancies are associated with relatively less maternal mass, placental mass and microscopic surface area suggesting that the intrauterine growth of triplets is supported by systems that increase the efficiency of nutrient transfer. The finding that individual triplet fetuses are also associated with significantly lower IGF‐II concentrations is consistent with the view that the marmoset fetoplacental unit exhibits a flexible pattern of placental allocation and metabolism. Plasticity in placental endocrine and metabolic function is likely to play an important role in the ability of the fetus to sense and accommodate the intrauterine environment and, by extension, the external ecology. Am. J. Primatol. 71:969–975, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Mitochondria and crude nuclei containing fractions from human placenta have been shown to contain proteins which bind [α32P]‐GTP. Prior to this study the number of GTP‐binding proteins in placental nuclei and their nucleotide specificity was not known. Also unknown was the identity of any of the GTP‐binding proteins in mitochondria of human placenta. Nuclei and mitochondria were purified from human placental extracts by sedimentation. Proteins were separated by electrophoresis and transferred to nitrocellulose membranes. Overlay blot with [α32P]‐GTP identified two nuclei proteins with approximate molecular weights of 24 and 27 kDa. Binding of [α32P]‐GTP to the 27 and 24 kDa proteins was significantly displaced by guanine nucleotides but not by adenine, thymine or cytosine nucleotides or deoxy (d) GTP. Western blot with a specific antibody to Ran identified a band at 27 kDa in nuclei and in mitochondrial fractions. These data indicate that both nuclei and mitochondria contain 24 and 27 kDa GTP‐binding proteins. The GTP‐binding proteins in nuclei display binding specificity for guanine nucleotides and the hydroxylated carbon 2 on the ribose ring of GTP appears essential for binding. It will be important in future studies to determine the functions of these small GTP‐binding proteins in the development and physiology of the placenta. J. Cell. Biochem. 84: 100–107, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

16.
The brush-border glycoproteins of first-trimester human placentas were investigated by using two external labelling techniques: (1) sequential digestion with neuraminidase and galactose oxidase, followed by reduction with NaB3H4, which 3H-labels terminal galactose and galactosamine residues; and (2) sequential treatment with periodate and NaB3H4, which 3H-labels terminal sialic acid residues. The labelling procedures were performed on intact tissue so that the results would more closely approximate the topography of the brush border in vivo. The microvilli were isolated, subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and the [3H]glycoproteins detected by fluorography. Densitometer scans of the fluorograms of the [3H]galactoproteins showed that, under reducing conditions, 90% of the protein-associated radioactivity was incorporated into two glycoproteins. The major [3H]galactoprotein of early placental microvilli had an estimated molecular mass of 92 kDa (desialylated) and migrated as a diffuse band. A minor 180 kDa glycoprotein was less consistently labelled. No change in the apparent molecular mass of either component was detected in the absence of beta-mercaptoethanol, suggesting that the 180 kDa component was not a dimer of the 92 kDa glycoprotein. The remaining 10% the radioactivity was equally distributed among several minor membrane components. Densitometer scans of the fluorograms of the [3H]sialoproteins showed that, under either reducing or non-reducing conditions, 90% of the 3H was preferentially incorporated into the 92-110 kDa region of the gel. Although no distinct bands were visible, the higher-molecular-mass region of this area was always most heavily labelled. A minor 180 kDa glycoprotein was also 3H-labelled. The pattern of brushborder [3H]glycoproteins from first-trimester placentas differed markedly from that of term placental microvilli and from placental fibroblast plasma membranes that were 3H-labelled by identical external labelling techniques. These results indicate that: (1) the glycoprotein determinants of brush-border topography change during pregnancy; (2) within the placenta, the major 92 kDa (desialylated) determinant, which has not been previously described, is unique to the trophoblastic cells.  相似文献   

17.
We investigated the effects of genistein, an inhibitor of tyrosine protein phosphorylation, on mouse 1-cell embryos, since in response to mitogenic stimuli tyrosine protein phosphorylation in somatic cells is implicated in initiation of DNA synthesis. Genistein inhibits cleavage of 1-cell embryos in a concentration-dependent and reversible manner; biochanin A, which is a less potent inhibitor of tyrosine protein phosphorylation, is a less potent inhibitor of cell cleavage. Genistein does not inhibit [35S]methionine incorporation, but does inhibit [3H]thymidine incorporation. Consistent with genistein's ability to inhibit cleavage by inhibiting DNA synthesis is that the loss of genistein's ability to inhibit cleavage corresponds with exit of the 1-cell embryos from S phase. Genistein is likely to inhibit tyrosine protein phosphorylation in situ, since it reduces by 80% the relative amount of [32P]phosphotyrosine present in 1-cell embryos; genistein does not inhibit either [32P]orthophosphate uptake or incorporation. As anticipated, genistein has little effect on inhibiting changes in the pattern of phosphoprotein synthesis during the first cell cycle, since tyrosine protein phosphorylation constitutes a small percentage of total protein phosphorylation. Alkalai treatment of [32P]radiolabeled phosphoproteins transferred to Immobilon reveals a base-resistant set of phosphoproteins of Mr = 32,000 that displays cell-cycle changes in phosphorylation. Although these properties suggest that these phosphoproteins may be related to the p34cdc2 protein kinase, phosphoamino acid analysis of [32P]radiolabeled phosphoproteins reveals that they are not enriched for phosphotyrosine; the inactive for p34cdc2 protein kinase contains a high level of phosphotyrosine. Results of these experiments suggest that tyrosine protein phosphorylation in response to the fertilizing sperm may be involved in initiating DNA synthesis in the 1-cell embryo, as well as converting a meiotic cell cycle to a mitotic one.  相似文献   

18.
19.
The transfer of free fatty acids (FFA) across the placenta perfused in situ was studied in anaesthetised rabbits in late gestation. [14C]Palmitic acid and antipyrine were infused into 11 pregnant rabbits and samples collected for up to 90 min from the mother and the umbilical vessels. Levels of total FFA, radioactivity and antipyrine, a marker of placental integrity, were measured. Net FFA flux across the placenta increased with maternal FFA concentrations, confirming observations made using different methods. The specific activity of [14C]palmitic acid in perfusate also related to maternal levels and indicated that almost half of the FFA crossing the rabbit placenta must be derived from sources other than circulating maternal FFA. The composition of the perfusate FFA had a profile similar to that of circulating maternal FFA, except for an increase in a number of long chain, polyunsaturated fatty acids. These findings are consistent with maternal triacylglycerol as the other fatty acid source, with the placenta adding the longer chain, polyunsaturated fatty acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号