首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acetyl CoA carboxylase, in a partially purified preparation, was inactivated by ATP in a time- and temperature-dependent reaction. Adenosine 3′,5′-monophosphate did not affect the inactivation. Further purification separated the carboxylase from a protein fraction which could greatly enhance the inactivation of the enzyme.Inactivation of the enzyme with [γ-32P]ATP resulted in the incorporation of 32P which copurified with the enzyme. No label was incorporated when [U-14C]ATP was used. When carboxylase inactivated by exposure to [γ-32P]ATP was precipitated with antibody, isotope incorporation into the precipitate paralleled enzyme inactivation. The phosphate was bound to serine and threonine residues by an ester linkage.Sodium fluoride completely inhibited the activation of partially purified enzyme by magnesium ions. Activation by magnesium, accompanied by the release of protein-bound 32P, was antagonistic to inactivation of the enzyme by ATP.The data presented in this communication are consistent with a mechanism for controlling acetyl CoA carboxylase activity by interconversion between phosphorylated and dephosphorylated forms. Phosphorylation of the enzyme by a portein kinase decreases enzyme activity, whereas dephosphorylation by a protein phosphatase reactivates the enzyme.  相似文献   

2.
Beef-heart mitochondrial F1F0-ATP synthase contained six molecules of bound inorganic phosphate (Pi). This phosphate exchanged completely with exogenous 32Pi when the enzyme was exposed to 30% (v/v) dimethyl sulfoxide (DMSO) and then returned to a DMSO-free buffer (Beharry and Bragg 2001). Only two molecules were replaced by 32Pi when the enzyme was not pretreated with DMSO. These two molecules of 32Pi were not displaced from the enzyme by the treatment with 1 mM ATP. Similarly, two molecules of bound 32Pi remained on the DMSO-pretreated enzyme following addition of ATP, that is, four molecules of 32Pi were displaced by ATP. The ATP-resistant 32Pi was removed from the enzyme by pyrophosphate. It is proposed that these molecules of 32Pi are bound at an unfilled adenine nucleotide-binding noncatalytic site on the enzyme. Brief exposure of the enzyme loaded with two molecules of 32Pi to DMSO, followed by removal of the DMSO, resulted in the loss of the bound 32Pi and in the formation of two molecules of bound ATP from exogenous ADP. A third catalytic site on the enzyme was occupied by ATP, which could undergo a Pi ATP exchange reaction with bound Pi The presence of two catalytic sites containing bound Pi is consistent with the X-ray crystallographic structure of F1 (Bianchet, et al., 1998). Thus, five of the six molecules of bound Pi were accounted for. Three molecules of bound Pi were at catalytic sites and participated in ATP synthesis or Pi ATP exchange. Two other molecules of bound Pi were present at a noncatalytic adenine nucleotide-binding site. The location and role of the remaining molecule of bound Pi remains to be established. We were unable to demonstrate, using chemical modification of sulfhydryl groups by iodoacetic acid, any gross difference in the conformation of F1F0 in DMSO-containing compared with DMSO-free buffers.  相似文献   

3.
A rapid method capable of detecting low levels of ribokinase is given. [γ-32P]ATP is converted to ribose 5-[32P]phosphate which is not absorbable onto charcoal. The assay is linear in enzyme concentration to a lower limit of at least 4 × 10?2 mg of enzyme/ml.  相似文献   

4.
In perfused rat liver, the effects of various hormones on the stimulation of phosphorylation and allosteric properties of purified phosphorfructokinase were investigated. Rat livers were perfused with [32P]phosphate followed with various hormones or cyclicAMP, and 32P-labeled phosphofructokinase was isolated. 32P incorporation into the enzyme and enzyme inhibition by ATP or citrate were determined. Only glucagon increased the 32P incorporation into phosphofructokinase and this increase was approximately threefold. The cyclicAMP level was increased simultaneously approximately four- to fivefold compared to the control perfused liver. Similar results were obtained by perfusing the liver with cyclicAMP (0.1 mm). The phosphorylated phosphofructokinase showed a decrease in the Ki values for ATP (from 0.4 to 0.2 mm) and citrate (from 2 to 0.6 mm). Neither epinephrine nor insulin affected the extent of phosphorylation or the allosteric properties of the enzyme. The half-maximal concentration of glucagon required for phosphorylation of phosphofructokinase and modification of its allosteric properties was approximately 6 × 10?11m. It is concluded that glucagon increases the inhibition of liver phosphofructokinase by ATP and citrate through phosphorylation of the enzyme involving a β-receptor-mediated cyclicAMP-dependent mechanism.  相似文献   

5.
A procedure for the preparation of highly radioactive homogeneous 32P-labeled 3-hydroxy-3-methylglutaryl coenzyme A reductase from rat liver microsomes has been developed. The enzymatic preparation obtained by this procedure has a specific radioactivity 50-fold higher than that reported in previous literature. The purified enzyme was judged to be homogeneous on the basis of comigration of enzyme activity with a single band of protein and 32P radioactivity on polyacrylamide gels. The 32P covalently bound to the reductase was removed upon incubation with purified hydroxymethylglutaryl coenzyme A reductase phosphatase from rat liver.  相似文献   

6.
Alkali-inactivated pig liver pyruvate kinase, type L, and a cyanogen bromide fragment from the same enzyme were shown to be phosphorylated by (32P)ATP and cyclic 3′,5′-AMP-stimulated protein kinase. In both cases the rate of phosphorylation was higher than with the native enzyme. Pyruvate kinases types A and M were not phosphorylated under the same conditions. From the 32P-labelled cyanogen bromide fragment (32P)phosphorylserine was isolated. The electrophoretic pattern of (32P)phosphopeptides obtained on partial acid hydrolysis of the fragment indicated that the phosphorylated site of the fragment was identical with that of the native pyruvate kinase.  相似文献   

7.
Pig liver pyruvate kinase (type L) was 32P-labelled by incubation with (32P)ATP and cyclic 3′,5′-AMP-stimulated protein kinase from the same source. One major (32P)phosphopeptide was isolated from a peptic hydrolysate of the enzyme. Its amino acid sequence was Leu-Arg-Arg-Ala-(32P)SerP-Leu.  相似文献   

8.
Highly purified Na+, K+-ATPase of the dog kidney was reacted with Mg2++32Pi or Mg2++32Pi + ouabain. 32P-phosphorylation was terminated by the addition of EDTA, and the effects of various ligands on dephosphoration rate were studied. ATP reduced the dephosphorylation rates of both the native and the ouabain-complexed enzymes. K0.5 for this effect of ATP was about 0.2 mM. ADP also slowed dephosphorylation, but less effectively than ATP. The ATP effect on the native enzyme, but not that on the ouabain-complexed enzyme, was antagonized by Na+. The data establish the binding of ATP to the phosphoenzyme. Since the site that is phosphorylated by Pi is the same that is phosphorylated by ATP, coexistence of two ATP sites on the functional unit of the enzyme is suggested.  相似文献   

9.
Burst titration experiments conducted on a highly purified isoenzyme of wheat germ acid phosphatase under conditions where [S]o > Km indicate that there is one titratable active site per molecule of enzyme of molecular weight 59,000. The enzyme is labeled to only a small extent with inorganic [32P]phosphate ion. Incubation of wheat germ acid phosphatase with 32P-labeled substrates such as p-nitrophenyl phosphate or inorganic pyrophosphate followed by quenching in alkali results in the stoichiometric trapping of a base-stable, acid-labile phosphorylated protein. The extent of 32P incorporation parallels the degree of purity of the enzyme and corresponds to the incorporation of 1 mol of phosphate per mole of enzyme. The incorporation is eliminated by the simultaneous presence of excess unlabeled phosphate ion (a competitive inhibitor) and is not observed when a noncatalytic protein (such as bovine serum albumin) is substituted for the enzyme. Complete alkaline hydrolysis of the labeled protein results in the recovery of an 85% yield of τ-phosphohistidine, identified by ion-exchange chromatography, high-voltage paper electrophoresis, and comparison with a synthetic sample. A 32P-labeled tryptic tetradecapeptide was isolated following hydrolysis of the labeled, reduced, and carboxymethylated protein with trypsin at pH 8.3, separation of the labeled peptide, and purification by two methods including a novel variant of a diagonal electrophoresis technique. The end groups and composition of the peptide are reported. The data are consistent with the interpretation that a phosphohistidine-enzyme intermediate is formed as an obligatory intermediate in the catalytic reaction involving this enzyme.  相似文献   

10.
The addition of glucagon (10?6 M) to an incubation mixture containing 32Pi and hepatocytes isolated from livers of rats fed ad libitum results in both a 3-fold increased incorporation of 32P into L-type pyruvate kinase and a decreased catalytic activity. The 32P incorporated into pyruvate kinase was covalently bound to the enzyme as evidenced by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In addition, exogenous cyclic AMP (10?3 M) stimulated the phosphorylation and the suppression of catalytic activity to a similar extent. On the other hand, insulin (10?7 M) had essentially no effect on the incorporation of 32P into pyruvate kinase or on its catalytic activity under the conditions used in this study. These results suggest that phosphorylation of pyruvate kinase invivo is stimulated by glucagon via cyclic AMP and cyclic AMP-dependent protein kinase and that the activity of the enzyme is, at least in part, regulated by a phosphorylation-dephosphorylation mechanism.  相似文献   

11.
The effect of glucagon on the phosphorylation of pyruvate kinase in 32P-labelled slices from rat liver was investigated. Pyruvate kinase was isolated by immunoadsorbent chromatography. The enzyme was partially phosphorylated in the absence of added hormone (0.2 mol of phosphate/mol of enzyme subunit). Upon incubation with 10?7 M glucagon, the incorporation of [32P]phosphate was 0.6–0.7 mol/mol of enzyme subunit. Concomitantly, the concentration of intracellular cyclic 3′,5′-AMP increased from 0.3 to 3.2 μM. The phosphorylation inhibited the enzyme activity at low concentrations of phosphoenolpyruvate (60% at 0.5 mM). Almost maximal phosphorylation of the enzyme was reached within 2 min after the addition of glucagon. The concentration of hormone giving half maximal effect on the pyruvate kinase phosphorylation was about 7×10?9M. The inactivation of the enzyme paralleled the increase in phosphorylation. It is concluded that pyruvate kinase is phosphorylated in the intact liver cell.  相似文献   

12.
A radiotracer enzyme assay for phosphofructokinase using adenosine 5′-triphosphate[α,β,γ-32P] is described in this paper. Here the rates of appearance of both [1-32P]d-fructose 1,6-diphosphate and [α,β-32P] adenosine 5′-diphosphate were followed to establish enzyme activity. The unique advantages of multiple rate determinations in a single reaction sequence which accrue from the use of a readily available multiply labeled cosubstrate are discussed. By an extension of this approach other labeled(1) nucleotides of the type, N(1P)n, and enzymes in the Enzyme Commision categories, EC 2.7(phosphotransferases) and EC 6.1–6.4(ligases) are equally amenable to radionuclide assay.  相似文献   

13.
A manual ATPase assay which measures the release of 32Pi from [γ-32P]ATP is described. Sodium dodecyl sulfate is used to terminate the enzyme reaction and extraction of the phophomolybdate complex into xylene: isobutanol is used to separate 32Pi from [γ-32P]ATP for quantitation by scintillation counting. The three-step assay is rapid (75–90 samples/h) and minimizes hydrolysis of ATP due to exposure to acidie conditions. The extraction procedure separates 10−15 to 10−7 mol of 32Pi from aqueous solution with an efficiency of 100,7 ± 0.62%. Less than 1% of unhydrolyzed [γ-32P]ATP is extracted. Extraction efficiency is not affected by protein or salts commonly present in enzyme incubation mixtures. Results obtained with this assay are precise, with an intraassay coefficient of variation of 0.6% and an interassay coefficient of variation of 1.8%. The results are comparable to results obtained with a spectrophotometric assay, with a correlation coefficient of 0,996, though assay performance and sensitivity are greatly improved with the isotopic assay.  相似文献   

14.
Prolyl-tRNA synthetase from plants (e.g. Delonix regia) containing azetidine-2-carboxylic acid (A2C), activated imino acid analogues larger than proline (Pro) more efficiently than did the enzyme from plants lacking A2C. The reverse situation was observed for analogues, including A2C itself, that are smaller than Pro. The enzyme from A2C-producing species was quite labile and salt-sensitive, with a high pH optima for the ATP-32PPi exchange reaction, whereas the enzyme from non-producer species was stable and insensitive to salts, with a lower pH optimum. Certain analogues of Pro, which failed to stimulate ATP-32PPi in the presence of a particular type of Pro-tRNA synthetase, nevertheless could bind to the enzyme and inhibit the esterification of tRNA by Pro. In the absence of tRNA, no significant ATP-32PPi exchange was catalyzed by the Delonix enzyme on addition of A2C; the addition of tRNA resulted in a low but real level of activation of the analogue relative to Pro. These findings are discussed in relation to the ability of the enzyme from A2C-producing plants to discriminate against the analogue.  相似文献   

15.
The NADP+-specific glutamate dehydrogenase inEscherichia coli K12 has been shown to be phosphorylated in vivo when the cells are grown in a low-phosphate minimal salts medium containing32P inorganic phosphate. The amount of radioactivity incorporated into the enzyme is different depending on the growth phase of the culture, with the highest level of32P incorporation occurring during the mid-exponential growth phase. Previously reported studies have demonstrated that the enzyme is also phosphorylated in vitro in an ATP-dependent reaction.  相似文献   

16.
Reversible seryl-phosphorylation contributes to the light/dark regulation of C4-leaf phosphoenolpyruvate carboxylase (PEPC) activity in vivo. The specific regulatory residue that, upon in vitro phosphorylation by a maize-leaf protein-serine kinase(s), leads to an increase in catalytic activity and a decrease in malate-sensitivity of the target enzyme has been recently identified as Ser-15 in 32P-phosphorylated/activated dark-form maize PEPC (J-A Jiao, R Chollet [1990] Arch Biochem Biophys 283: 300-305). In order to ascertain whether this N-terminal seryl residue is, indeed, the in vivo regulatory phosphorylation site, [32P]phosphopeptides were isolated and purified from in vivo 32P-labeled maize and sorghum leaf PEPC and subjected to automated Edman degradation analysis. The results show that purified light-form maize PEPC contains 14-fold more 32P-radioactivity than the corresponding dark-form enzyme on an equal protein basis and, more notably, only a single N-terminal serine residue (Ser-15 in maize PEPC and its structural homolog, Ser-8, in the sorghum enzyme) was found to be 32P-phosphorylated in the light or dark. These in vivo observations, combined with the results from our previous in vitro phosphorylation studies (J-A Jiao, R Chollet [1989] Arch Biochem Biophys 269: 526-535; [1990] Arch Biochem Biophys 283: 300-305), demonstrate that an N-terminal seryl residue in C4 PEPC is, indeed, the regulatory site that undergoes light/dark changes in phosphorylation-status and, thus, plays a major, if not cardinal role in the light-induced changes in catalytic and regulatory properties of this cytoplasmic C4-photosynthesis enzyme in vivo.  相似文献   

17.
A rapid and sensitive assay for pyrimidine dimers in DNA   总被引:1,自引:0,他引:1  
We have developed a rapid, sensitive assay for pyrimidine dimers. The assay has greatly facilitated the purification and characterization of the photoreactivating enzyme. The procedure depends on (1) the resistance of the nucleotide phosphate bond in dimer-containing regions of DNA to attack by DNase I, venom phosphodiesterase and alkaline phosphatase and (2) selective adsorption to Norit of mononucleosides and 32P-labeled, dimer containing oligonucleotides (but not 32P1) resulting from nuclease digestion of highly-purified, 32P-labeled bacteriophage DNA. The method is sensitive and rapid. The presence of the usual nuclease activities found in cell extracts does not interfere with the assay. Thus photoreactivating enzyme activity can be detected even in the presence of non-specific or uv-specific nucleases. Neither photoreactivation nor the digestion reaction is affected by purification agents at concentrations commonly used in enzyme purification.  相似文献   

18.
Fructose-1,6-bisphosphatase was precipitated with purified rabbit antiserum from extracts of 32P-orthophosphate labelled yeast cells, submitted to SDS polyacrylamide gel electrophoresis, extracted from the gels and counted for radioactivity due to 32P incorporation. Fructose-1,6-bisphosphatase from glucose starved yeast cells contained a very low 32P label. During 3 min treatment of the glucose starved cells with glucose the 32P-label increased drastically. Subsequent incubation of the cells in an acetate containing, glucose-free medium led to a label which was again low. Analysis for phosphorylated amino acids in the immunpprecipitated fructose-1,6-bisphosphatase protein from the 3 min glucose-inactivated cells exhibited phospho-serine as the only labelled phosphoamino acid. These data demonstrate a phosphorylation of a serine residue of fructose-1,6-bisphosphatase during this 3 min glucose treatment of glucose starved cells. A concomitant about 60 % inactivation of the enzyme had been shown to occur. The data in addition show a release of the esterified phosphate from the enzyme upon incubation of cells in a glucose-free medium, a treatment which leads to peactivation of enzyme activity. A protein kinase and a protein phosphatase catalysing this metabolic interconversion of fructose-1,6-bisphosphatase are postulated. It is assumed that metabolites accumulating after the addition of glucose exert a positive effect on the kinase activity and/or have a negative effect on the phosphatase activity. A role of the enzymic phosphorylation of fructose-1,6-bisphosphatase in the initiation of complete proteolysis of the enzyme during “catabolite inactivation” is discussed.  相似文献   

19.
Amino acids stimulated the (Na+ + K+)-dependent ATPase activity of a rabbit kidney preparation without affecting the Mg2+-ATPase activity; the most effective was histidine, producing a 2-fold increase in activity. Similar stimulation was produced by the well-known chelators EDTA, EGTA, and 8-hydroxyquinoline, and by the chelating phospholipid phosphatidylserine. In the presence of maximally effective concentrations of one agent, the other agents were unable to produce additional stimulation. It is suggested that the amino acids, phosphatidylserine, and the conventional chelators all stimulate the ATPase by a common mechanism: the removal of inhibitory trace metal (s). From measurements of the metal content of the enzyme preparation and experiments with extracted reagents it was concluded that the chelatable inhibitor was in the reagents used in the incubation medium rather than being endogenous to the enzyme; attempts to identify the inhibitor (s) were unsuccessful. The chelators also stimulated the K+-dependent phosphatase activity in the preparation but had no major effect on Na+-dependent incorporation of 32P from [32P]ATP. On monovalent cation activation the chelators appeared to relieve an uncompetitive inhibition of Na32 activation and a noncompetitive inhibition of K32 activation, also suggesting an action of the chelatable inhibitor on the later stages of the ATPase reaction sequence.  相似文献   

20.
The major metabolic route for the synthesis of phosphoenolpyruvate is from 2-phosphoglycerate catalyzed by the enzyme enolase (EC 4.2.1.11). Enolase occurs at the converging point between glycolysis and gluconeogenesis and may be an important regulatory enzyme. Growth ofEscherichia coli JA 200 pLC 11-8 to stationary phase in low-phosphate medium containing32P-orthophosphate and glucose as the carbon source resulted in incorporation of label into the enzyme. In vivo labeling of enolase was demonstrated by immunoaffinity chromatography of the labeled crude extract. In addition,32P-enolase was identified with sodium dodecylsulfate polyacrylamide gels, two-dimensional gel electrophoresis, and Western blot analysis, followed by autoradiography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号