首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The generation of new neurons within the dentate gyrus of the mature hippocampus is critical for spatial learning, object recognition and memory, whereas new neurons born in the subventricular zone (SVZ) contribute to olfactory function. Adult neurogenesis is a multistep process that begins with the activation and proliferation of a pool of stem/precursor cells. Although the presence of self-renewing and multipotent neural precursors is well established in the SVZ, it is only recently that the existence of such a precursor population has been demonstrated in the hippocampus, the region of the brain involved in learning and memory. Determining how this normally latent pool can be activated therefore offers considerable potential for the development of targeted neurogenic-based therapeutics to ameliorate the cognitive decline associated with hippocampal dysfunction in several neurodegenerative diseases. In this review, we summarize the effects of neural activity, various molecular factors and pharmaceutical agents, as well as voluntary exercise, in activating endogenous neural precursors in the two neurogenic niches of the adult brain, and highlight the role of activation-driven enhancement of neurogenesis for the treatment of psychiatric illness and aging dementia.  相似文献   

3.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   

4.
Neurotrophic and growth factors are major subgroups of polypeptides that are synthesized naturally and characterized by the following effects: neuronal differentiation, survey of nerve cell functional integrity, protection against degeneration and lesions, which maintain nerve cells alive. Neurotrophic and growth factors increase the resistance of neuronal tissue to the noxious influence such as hypoxia, exitotoxicity, trauma, stress injury, hypoglycemia, etc. Neurotrophic and growth factors are important in the synaptic plastivcity, activity of learning and cognitive proecesses, regulation of depressive and anxiogenic states. Analysis of clinical and experimental data suggested tha main role of neurotrophins and growth factors in the pathogenesis of ischemic and neurodegenerative brain processes. Some factors are considered as specific markers or targets for concrete diseases; but for any other factors the protective function and therapeutically opportunity for treatment of some pathologies have been revealed. There is some evidence for antiapoptic effects of neurotrophic and growth factors as a basic principle for their neuroprotective function.  相似文献   

5.
Targeted ectopic expression of genes in the adult brain is an invaluable approach for studying many biological processes. This can be accomplished by generating transgenic mice or by virally mediated gene transfer, but these methods are costly and labor intensive. We devised a rapid strategy that allows localized in vivo transfection of plasmid DNA within the adult neurogenic niches without detectable brain damage. Injection of plasmid DNA into the ventricular system or directly into the hippocampus of adult mice, followed by application of electrical current via external electrodes, resulted in transfection of neural stem or progenitor cells and mature neurons. We showed that this strategy can be used for both fate mapping and gain- or loss-of-function experiments. Using this approach, we identified an essential role for cadherins in maintaining the integrity of the lateral ventricle wall. Thus, in vivo electroporation provides a new approach to study the adult brain.  相似文献   

6.
The social environment is known to modulate adult neurogenesis. Studies in mammals and birds have shown a strong correlation between social isolation and decreases in neurogenesis, whereas time spent in an enriched environment has been shown to restore these deficits and enhance neurogenesis. These data suggest that there exists a common adaptive response among neurogenic niches to each extreme of the social environment. We sought to further test this hypothesis in zebrafish, a social species with distinct neurogenic niches within primary sensory structures and telencephalic nuclei of the brain. By examining stages of adult neurogenesis, including the proliferating stem/progenitor population, their surviving cohort, and the resulting newly differentiated neuronal population, we show that niches residing in sensory structures are most sensitive to changes in the social context, and that social isolation or novelty are both capable of decreasing the number of proliferating cells while increasing the number of newborn neurons within a single niche. Contrary to observations in rodents, we demonstrate that social novelty, a form of enrichment, does not consistently rescue deficits in cell proliferation following social isolation, and that cortisol levels do not negatively regulate changes in adult neurogenesis, but are correlated with the social context. We propose that enhancement or suppression of adult neurogenesis in the zebrafish brain under different social contexts depends largely on the type of niche (sensory or telencephalic), experience from the preceding social environment, and occurs independently of changes in cortisol levels. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1053–1077, 2014  相似文献   

7.
Paradoxically, aging leads to both decreased regenerative capacity in the brain and an increased risk of tumorigenesis, particularly the most common adult‐onset brain tumor, glioma. A shared factor contributing to both phenomena is thought to be age‐related alterations in neural progenitor cells (NPCs), which function normally to produce new neurons and glia, but are also considered likely cells of origin for malignant glioma. Upon oncogenic transformation, cells acquire characteristics known as the hallmarks of cancer, including unlimited replication, altered responses to growth and anti‐growth factors, increased capacity for angiogenesis, potential for invasion, genetic instability, apoptotic evasion, escape from immune surveillance, and an adaptive metabolic phenotype. The precise molecular pathogenesis and temporal acquisition of these malignant characteristics is largely a mystery. Recent studies characterizing NPCs during normal aging, however, have begun to elucidate mechanisms underlying the age‐associated increase in their malignant potential. Aging cells are dependent upon multiple compensatory pathways to maintain cell cycle control, normal niche interactions, genetic stability, programmed cell death, and oxidative metabolism. A few multi‐functional proteins act as ‘critical nodes’ in the coordination of these various cellular activities, although both intracellular signaling and elements within the brain environment are critical to maintaining a balance between senescence and tumorigenesis. Here, we provide an overview of recent progress in our understanding of how mechanisms underlying cellular aging inform on glioma pathogenesis and malignancy.  相似文献   

8.
For the long run: maintaining germinal niches in the adult brain   总被引:43,自引:0,他引:43  
Alvarez-Buylla A  Lim DA 《Neuron》2004,41(5):683-686
The adult mammalian brain retains neural stem cells that continually generate new neurons within two restricted regions: the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus subgranular zone (SGZ) of the hippocampus. Though these cellular populations are spatially isolated and subserve different brain systems, common themes begin to define adult neurogenic niches: (1) astrocytes serve as both stem cell and niche cell, (2) a basal lamina and concomitant vasculogenesis may be essential components of the niche, and (3) "embryonic" molecular morphogens and signals persist in these niches and play critical roles for adult neurogenesis. The adult neurogenic niches can be viewed as "displaced" neuroepithelium, pockets of cells and local signals that preserve enough embryonic character to maintain neurogenesis for life.  相似文献   

9.
Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell-cell interactions to diffusible factors, are spatially and temporally coordinated to regulate proliferation and neurogenesis, ultimately affecting stem cell fate choices. Here, we review the components of adult neural stem cell niches and how they act to regulate neurogenesis in these regions.  相似文献   

10.
Histone methyltransferases (HMTs) are present in heterogeneous cell populations within the adult brain including neurogenic niches. Yet the question remains whether loss of HMTs and the resulting changes in histone methylation alter cell fate in a region-specific manner. We utilized stereotaxic injection of Cre recombinant protein into the adult neurogenic niches, the subventricular zone (SVZ) adjacent to the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. We confirmed that Cre protein was enzymatically active in vivo and recombination events were restricted to the vicinity of injection areas. In this study, we focus on using Cre mediated recombination in mice harboring floxed HMT: enhancer of zeste homolog 2 (EZH2) or suppressor of variegation homolog (Suv4-20h). Injectable Cre protein successfully knocked out either EZH2 or Suv4-20h, allowing assessment of long-term effects in a region-specific fashion. We performed meso-scale imaging and flow cytometry for phenotype analysis and unbiased quantification. We demonstrated that regional loss of EZH2 affects the differentiation paradigm of neural stem progenitor cells as well as the maintenance of stem cell population. We further demonstrated that regional loss of Suv4-20h influences the cell cycle but does not affect stem cell differentiation patterns. Therefore, Cre protein mediated knock-out a given HMT unravel their distinguishable and important roles in adult neurogenic niches. This Cre protein-based approach offers tightly-controlled knockouts in multiple cell types simultaneously for studying diverse regulatory mechanisms and is optimal for region-specific manipulation within complex, heterogeneous brain architectures.  相似文献   

11.
We studied adult neurogenesis in the short‐lived annual fish Nothobranchius furzeri and quantified the effects of aging on the mitotic activity of the neuronal progenitors and the expression of glial fibrillary acid protein (GFAP) in the radial glia. The distribution of neurogenic niches is substantially similar to that of zebrafish and adult stem cells generate neurons, which persist in the adult brain. As opposed to zebrafish, however, the N. furzeri genome contains a doublecortin (DCX) gene. Doublecortin is transiently expressed by newly generated neurons in the telencephalon and optic tectum (OT). We also analyzed the expression of the microRNA miR‐9 and miR‐124 and found that they have complementary expression domains: miR‐9 is expressed in the neurogenic niches of the telencephalon and the radial glia of the OT, while miR‐124 is expressed in differentiated neurons. The main finding of this paper is the demonstration of an age‐dependent decay in adult neurogenesis. Using unbiased stereological estimates of cell numbers, we detected an almost fivefold decrease in the number of mitotically active cells in the OT between young and old age. This reduced mitotic activity is paralleled by a reduction in DCX labeling. Finally, we detected a dramatic up‐regulation of GFAP in the radial glia of the aged brain. This up‐regulation is not paralleled by a similar up‐regulation of S100B and Musashi‐1, two other markers of the radial glia. In summary, the brain of N. furzeri replicates two typical hallmarks of mammalian aging: gliosis and reduced adult neurogenesis.  相似文献   

12.
Dynamics of the brain cell microenvironment   总被引:3,自引:0,他引:3  
  相似文献   

13.
Calcium diffusion in the brain cell microenvironment   总被引:1,自引:0,他引:1  
A review of some of the literature on Ca2+ diffusion in free media and a variety of nervous tissues is presented. In the majority of tissue studies the apparent diffusion coefficient of Ca2+ is three to nine times smaller than that in a free aqueous medium. The methodology of using pressure microejection and Ca2+ ion-selective microelectrodes to measure Ca2+ diffusion is discussed. Our ongoing studies of Ca2+ diffusion in the cerebral cortex of the rat, using these methods, also confirm that Ca2+ diffusion is mainly influenced by the tortuosity of the tissue rather than other factors such as binding to extracellular charge sites or uptake.  相似文献   

14.
The origin of molecular mechanisms of cephalic development is an intriguing question in evolutionary and developmental biology. Ascidians, positioned near the origin of the phylum Chordata, share a conserved set of anteroposterior patterning genes with vertebrates. Here we report the cross-phylum regulatory potential of the ascidian Otx gene in the development of the Drosophila brain and the head vertex structures. The ascidian Otx gene rescued the embryonic brain defect caused by a null mutation of the Drosophila orthodenticle (otd) gene and enhanced rostral brain development while it suppressed trunk nerve cord formation. Furthermore, the ascidian Otx gene restored the head vertex defects caused by a viable otd mutation, ocelliless, via specific activation and repression of downstream regulatory genes. These cross-phylum regulatory potentials of the ascidian Otx gene are equivalent to the activities of the Drosophila and human otd/Otx genes in these developmental processes. These results support the notion that basal chordates such as ascidians have the same molecular patterning mechanism for the anterior structures found in higher chordates, and suggest a common genetic program of cephalic development in invertebrate, protochordate and vertebrate.  相似文献   

15.
16.
Bioinformatics methods have identified enhancers that mediate restricted expression in the Drosophila embryo. However, only a small fraction of the predicted enhancers actually work when tested in vivo. In the present study, co-regulated neurogenic enhancers that are activated by intermediate levels of the Dorsal regulatory gradient are shown to contain several shared sequence motifs. These motifs permitted the identification of new neurogenic enhancers with high precision: five out of seven predicted enhancers direct restricted expression within ventral regions of the neurogenic ectoderm. Mutations in some of the shared motifs disrupt enhancer function, and evidence is presented that the Twist and Su(H) regulatory proteins are essential for the specification of the ventral neurogenic ectoderm prior to gastrulation. The regulatory model of neurogenic gene expression defined in this study permitted the identification of a neurogenic enhancer in the distant Anopheles genome. We discuss the prospects for deciphering regulatory codes that link primary DNA sequence information with predicted patterns of gene expression.  相似文献   

17.
The auditory sensory cells are sensitive to a variety of influences such as noise, ototoxic drugs and aging. In the cochlea of mammals, the destroyed sensory cells are not replaced by new sensory cells. That leads to cochlear deafness, a frequent disease in human. Unfortunately, such auditory impairment is out of reach of treatment. The development of new therapeutic strategies in this field requires a precise knowledge of the mechanisms involved in auditory sensory cells disappearance and in organ of Corti's degeneration. The aim of our study was to characterize cellular and molecular changes in the cochlea of rats which had been intoxicated with the ototoxic antibiotic amikacin. The animals were sacrificed at different survival times during and after the antibiotic treatment and their cochleas were investigated using transmission and scanning electron microscopy and using confocal microscopy after tissue labellings with different fluorescent probes. The results revealed the existence of three periods. The first one corresponds to the disappearance of the sensory cells which die by apoptosis. During the second period, the organ of Corti undergoes a scarring process; concomitantly, a contingent of nonsensory supporting cells attempts to transdifferentiate directly into sensory cells. This process however fails, and the supporting cells never reach the status of hair cells. A general process of dedifferentiation of all the epithelial cells of the organ of Corti followed by a massive apoptosis of numerous epithelial cells and of most ganglion cells occurs during the third period. After that, the organ of Corti is definitely reduced to a simple monolayered epithelium. On the basis of these data, experimental strategies aimed i) to protect the sensory cells against apoptosis and ii) to promote sensory cell regeneration are now under study. They might have important implications in human therapy.  相似文献   

18.
The prediction and definition of the conditions for the potentially suitable ecological niche of the subfamily Diaspidiinae was the main goal of this study. Our research was based on 283 specimens of all known species of assassin bugs belonging to the subfamily Diaspidiinae stored in European museum collections and a set of 21 environmental variables in the form of a 1 × 1 km grid covering Africa and Madagascar. Based on occurrence localities, as well as a digital elevation model and layer of the tree cover‐continuous fields, information about the distribution of each species is given. Using Maxent software, potentially useful ecological niches were modeled, which allowed for the creation of a map of the potential distribution of the members of this subfamily and for determining their climatic preferences. A jackknife test showed that annual precipitation, annual temperature range and tree cover‐continuous fields were the most important environmental variables affecting the distribution of the subfamily Diaspidiinae. An analysis of climatic preferences suggested that the representatives of the subfamily were linked mainly to the tropical climate. An analysis of environmental variables also showed that the subfamily preferred areas with herbaceous vegetation and some trees, and this preference is probably caused by the food preferences of their prey. On the basis of the museum data on the species occurrence, as well as ecological niche modeling methods, we provided new and valuable information on potentially suitable habitat and the possible range of distribution of the subfamily Diaspidiinae along with its climatic preferences.  相似文献   

19.
A study was made of the content of some neurotransmitters in the rat brain during neurogenic gastric lesions induced by excessive irritation of the body. The 3-hour electric stimulation combined with immobilization of the animals and mechanical stimulation of the pyloroduodenal reflexogenic zone led to a noticeable reduction in the content of histamine, serotonin and GABA in the brain. It is suggested that histamine-, serotonin- and GABA-ergic systems are involved in the central mechanisms of the development of neurogenic gastric lesions.  相似文献   

20.
Evidence is accumulating that the malignant phenotype of a given tumor is dependent not only on the intrinsic characteristics of tumor cells, but also on the cooperative interactions of non-neoplastic cells, soluble secreted factors and the non-cellular solid-state ECM network that comprise the tumor microenvironment. Given the ability of the tumor microenvironment to regulate the cellular phenotype, recent efforts have focused on understanding the molecular mechanisms by which cells sense, assimilate, interpret, and ultimately respond to their immediate surroundings. Exciting new studies are beginning to unravel the complex interactions between the numerous cell types and regulatory factors within the tumor microenvironment that function cooperatively to control tumor cell invasion and metastasis. Here, we will focus on studies concerning a common theme, which is the central importance of the non-cellular solid-state compartment as a master regulator of the malignant phenotype. We will highlight the non-cellular solid-state compartment as a relatively untapped source of therapeutic and imaging targets and how cellular interactions with these targets may regulate tumor metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号