首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gating of voltage-dependent K(+) channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn(2+) coordination. Also, added Zn(2+) or a potent Zn(2+) chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is approximately 200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact alpha-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1--T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn(2+) binding.  相似文献   

2.
KChIP proteins regulate Shal, Kv4.x, channel expression by binding to a conserved sequence at the N terminus of the subunit. The binding of KChIP facilitates a redistribution of Kv4 protein to the cell surface, producing a large increase in current along with significant changes in channel gating kinetics. Recently we have shown that mutants of Kv4.2 lacking the ability to bind an intersubunit Zn(2+) between their T1 domains fail to form functional channels because they are unable to assemble to tetramers and remain trapped in the endoplasmic reticulum. Here we find that KChIPs are capable of rescuing the function of Zn(2+) site mutants by driving the mutant subunits to assemble to tetramers. Thus, in addition to known trafficking effects, KChIPs play a direct role in subunit assembly by binding to monomeric subunits within the endoplasmic reticulum and promoting tetrameric channel assembly. Zn(2+)-less Kv4.2 channels expressed with KChIP3 demonstrate several distinct kinetic changes in channel gating, including a reduced time to peak and faster entry into the inactivated state as well as extending the time to recover from inactivation by 3-4 fold.  相似文献   

3.
Minor DL  Lin YF  Mobley BC  Avelar A  Jan YN  Jan LY  Berger JM 《Cell》2000,102(5):657-670
Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusually polar interface. An isosteric mutation in this interface causes surprisingly little structural alteration while stabilizing the closed channel and increasing the stability of T1 tetramers. Replacing T1 with a tetrameric coiled-coil destabilizes the closed channel. Together, these data suggest that structural changes involving the buried polar T1 surfaces play a key role in the conformational changes leading to channel opening.  相似文献   

4.
The intracellular C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is a 40-residue-long segment that natively adopts a helical bundle conformation with 4-fold symmetry. A hallmark of KcsA behavior is pH-induced conformational change, which leads to the opening of the channel at acidic pH. Previous studies have reached conflicting conclusions as to the role of the CTD in this transition. Here, we investigate the involvement of this domain in pH-mediated channel opening by NMR using a soluble peptide corresponding to residues 128-160 of the CTD (CTD34). At neutral pH, CTD34 exhibits concentration-dependent spectral changes consistent with oligomer formation. We prove this slowly tumbling species to be a tetramer with a dissociation constant of (2.0±0.5)×10(-)(11)?M(3) by NMR and sedimentation equilibrium experiments. Whereas monomeric CTD34 is only mildly helical, secondary chemical shifts prove that the tetrameric species adopts a tight native-like helical bundle conformation. The tetrameric species undergoes pH-dependent dissociation, and CTD34 is fully monomeric below pH?5.0. The structural basis for this phenomenon is the destabilization of the tetrameric CTD34 by protonation of residue H145 in the monomeric form of the peptide. We conclude that (i) the CTD34 peptide is independently capable of forming a tetrameric helical bundle, and (ii) this structurally significant conformational shift is modulated by the effects of solution pH on residue H145. Therefore, the involvement of this domain in the pH gating of the channel is strongly suggested.  相似文献   

5.
The intracellular tetramerization domain (T1) of most eukaryotic voltage-gated potassium channels (Kv channels) exists as a "hanging gondola" below the transmembrane regions that directly control activation gating via the electromechanical coupling between the S4 voltage sensor and the main S6 gate. However, much less is known about the putative contribution of the T1 domain to Kv channel gating. This possibility is mechanistically intriguing because the T1-S1 linker connects the T1 domain to the voltage-sensing domain. Previously, we demonstrated that thiol-specific reagents inhibit Kv4.1 channels by reacting in a state-dependent manner with native Zn(2+) site thiolate groups in the T1-T1 interface; therefore, we concluded that the T1-T1 interface is functionally active and not protected by Zn(2+) (Wang, G., M. Shahidullah, C.A. Rocha, C. Strang, P.J. Pfaffinger, and M. Covarrubias. 2005. J. Gen. Physiol. 126:55-69). Here, we co-expressed Kv4.1 channels and auxiliary subunits (KChIP-1 and DPPX-S) to investigate the state and voltage dependence of the accessibility of MTSET to the three interfacial cysteines in the T1 domain. The results showed that the average MTSET modification rate constant (k(MTSET)) is dramatically enhanced in the activated state relative to the resting and inactivated states (approximately 260- and approximately 47-fold, respectively). Crucially, under three separate conditions that produce distinct activation profiles, k(MTSET) is steeply voltage dependent in a manner that is precisely correlated with the peak conductance-voltage relations. These observations strongly suggest that Kv4 channel gating is tightly coupled to voltage-dependent accessibility changes of native T1 cysteines in the intersubunit Zn(2+) site. Furthermore, cross-linking of cysteine pairs across the T1-T1 interface induced substantial inhibition of the channel, which supports the functionally dynamic role of T1 in channel gating. Therefore, we conclude that the complex voltage-dependent gating rearrangements of eukaryotic Kv channels are not limited to the membrane-spanning core but must include the intracellular T1-T1 interface. Oxidative stress in excitable tissues may perturb this interface to modulate Kv4 channel function.  相似文献   

6.
Coiled-coils are widespread protein–protein interaction motifs typified by the heptad repeat (abcdefg)n in which “a” and “d” positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583–611), “Q1-short,” of the coiled-coil assembly specificity domain from the voltage-gated potassium channel Kv7.1 (KCNQ1) determined at 1.7 Å resolution. Q1-short lacks one and half heptads present in a previously studied tetrameric coiled-coil construct, Kv7.1 585–621, “Q1-long.” Surprisingly, Q1-short crystallizes as a trimer. In solution, Q1-short self-assembles more poorly than Q1-long and depends on an R-h-x-x-h-E motif common to trimeric coiled-coils. Addition of native sequences that include “a” and “d” positions C-terminal to Q1-short overrides the R-h-x-x-h-E motif influence and changes assembly state from a weakly associated trimer to a strongly associated tetramer. These data provide a striking example of a naturally occurring amino sequence that exhibits context-dependent folding into different oligomerization states, a three-stranded versus a four-stranded coiled-coil. The results emphasize the degenerate nature of coiled-coil energy landscapes in which small changes can have drastic effects on oligomerization. Discovery of these properties in an ion channel assembly domain and prevalence of the R-h-x-x-h-E motif in coiled-coil assembly domains of a number of different channels that are thought to function as tetrameric assemblies raises the possibility that such sequence features may be important for facilitating the assembly of intermediates en route to the final native state.  相似文献   

7.
Voltage-gated potassium (Kv) channels are transmembrane tetramers of individual α-subunits. Eight different Shaker-related Kv subfamilies have been identified in which the tetramerization domain T1, located on the intracellular N terminus, facilitates and controls the assembly of both homo- and heterotetrameric channels. Only the Kv2 α-subunits are able to form heterotetramers with members of the silent Kv subfamilies (Kv5, Kv6, Kv8, and Kv9). The T1 domain contains two subdomains, A and B box, which presumably determine subfamily specificity by preventing incompatible subunits to assemble. In contrast, little is known about the involvement of the A/B linker sequence. Both Kv2 and silent Kv subfamilies contain a fully conserved and negatively charged sequence (CDD) in this linker that is lacking in the other subfamilies. Neutralizing these aspartates in Kv2.1 by mutating them to alanines did not affect the gating properties, but reduced the current density moderately. However, charge reversal arginine substitutions strongly reduced the current density of these homotetrameric mutant Kv2.1 channels and immunocytochemistry confirmed the reduced expression at the plasma membrane. Förster resonance energy transfer measurements using confocal microscopy showed that the latter was not due to impaired trafficking, but to a failure to assemble the tetramer. This was further confirmed with co-immunoprecipitation experiments. The corresponding arginine substitution in Kv6.4 prevented its heterotetrameric interaction with Kv2.1. These results indicate that these aspartates (especially the first one) in the A/B box linker of the T1 domain are required for efficient assembly of both homotetrameric Kv2.1 and heterotetrameric Kv2.1/silent Kv6.4 channels.  相似文献   

8.
A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function.  相似文献   

9.
A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function.  相似文献   

10.
The protease domain within the RUBV (rubella virus) NS (non-structural) replicase proteins functions in the self-cleavage of the polyprotein precursor into the two mature proteins which form the replication complex. This domain has previously been shown to require both zinc and calcium ions for optimal activity. In the present study we carried out metal-binding and conformational experiments on a purified cysteine-rich minidomain of the RUBV NS protease containing the putative Zn(2+)-binding ligands. This minidomain bound to Zn(2+) with a stoichiometry of approximately 0.7 and an apparent dissociation constant of <500 nM. Fluorescence quenching and 8-anilinonaphthalene-1-sulfonic acid fluorescence methods revealed that Zn(2+) binding resulted in conformational changes characterized by shielding of hydrophobic regions from the solvent. Mutational analyses using the minidomain identified residues Cys(1175), Cys(1178), Cys(1225) and Cys(1227) were required for the binding of Zn(2+). Corresponding mutational analyses using a RUBV replicon confirmed that these residues were necessary for both proteolytic activity of the NS protease and viability. The present study demonstrates that the CXXC(X)(48)CXC Zn(2+)-binding motif in the RUBV NS protease is critical for maintaining the structural integrity of the protease domain and essential for proteolysis and virus replication.  相似文献   

11.
To interpret the recent atomic structures of the Kv (voltage-dependent potassium) channel T1 domain in a functional context, we must understand both how the T1 domain is integrated into the full-length functional channel protein and what functional roles the T1 domain governs. The T1 domain clearly plays a role in restricting Kv channel subunit heteromultimerization. However, the importance of T1 tetramerization for the assembly and retention of quarternary structure within full-length channels has remained controversial. Here we describe a set of mutations that disrupt both T1 assembly and the formation of functional channels and show that these mutations produce elevated levels of the subunit monomer that becomes subject to degradation within the cell. In addition, our experiments reveal that the T1 domain lends stability to the full-length channel structure, because channels lacking the T1 containing N terminus are more easily denatured to monomers. The integration of the T1 domain ultrastructure into the full-length channel was probed by proteolytic mapping with immobilized trypsin. Trypsin cleavage yields an N-terminal fragment that is further digested to a tetrameric domain, which remains reactive with antisera to T1, and that is similar in size to the T1 domain used for crystallographic studies. The trypsin-sensitive linkages retaining the T1 domain are cleaved somewhat slowly over hours. Therefore, they seem to be intermediate in trypsin resistance between the rapidly cleaved extracellular linker between the first and second transmembrane domains, and the highly resistant T1 core, and are likely to be partially structured or contain dynamic structure. Our experiments suggest that tetrameric atomic models obtained for the T1 domain do reflect a structure that the T1 domain sequence forms early in channel assembly to drive subunit protein tetramerization and that this structure is retained as an integrated stabilizing structural element within the full-length functional channel.  相似文献   

12.
Enhanced Trafficking of Tetrameric Kv4.3 Channels by KChIP1 Clamping   总被引:1,自引:0,他引:1  
Cui YY  Liang P  Wang KW 《Neurochemical research》2008,33(10):2078-2084
The cytoplamsic auxiliary KChIPs modulate surface expression and gating properties of Kv4 channels. Recent co-crystal structure of Kv4.3 N-terminus and KChIP1 reveals a clamping action of the complex in which a single KChIP1 molecule laterally binds two neighboring Kv4.3 N-termini at different locations, thus forming two contact interfaces involved in the protein–protein interaction. In the second interface, it functions to stabilize the tetrameric assembly, but the role it plays in channel trafficking remains elusive. In this study, we examined the effects of KChIP1 on Kv4 protein trafficking in COS-7 cells expressing EGFP-tagged Kv4.3 channels using confocal microscopy. Mutations either in KChIP1 (KChIP1 L39E-Y57A-K61A) or Kv4.3 (Kv4.3 E70A-F73E) that disrupt the protein–protein interaction within the second interface can reduce surface expression of Kv4 channel proteins. Kv4.3 C110A, the Zn2+ binding site mutation in T1 domain, that disrupts the tetrameric assembly of the channels can be rescued by WT KChIP1, but not the KChIP1 triple mutant. These results were further confirmed by whole cell current recordings in oocytes. Our findings show that key residues of second interface involved in stabilizing tetrameric assembly can regulate the channel trafficking, indicating an intrinsic link between tetrameric assembly and channel trafficking. The results also suggest that formation of octameric Kv4 and KChIP complex by KChIPs clamping takes place before their trafficking to final destination on the cell surface. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

13.
Robinson JM  Deutsch C 《Neuron》2005,45(2):223-232
Acquisition of secondary, tertiary, and quaternary structure is critical to the fabrication, assembly, and function of ion channels, yet the relationship between these biogenic events remains unclear. We now address this issue in voltage-gated K(+) channels (Kv) for the T1 domain, an N-terminal Kv recognition domain that is responsible for subfamily-specific, efficient assembly of Kv subunits. This domain forms a 4-fold symmetric tetramer. We have identified residues along the axial T1-T1 interface that are critical for tertiary and quaternary structure, shown that mutations at one end of the axial T1 interface can perturb the crosslinking of an intersubunit cysteine pair at the other end, and demonstrated that tertiary folding and tetramerization of this Kv domain are coupled. A threshold level of tertiary folding is required for monomers to oligomerize. Coupling between tertiary and quaternary structure formation may be a common feature in the biogenesis of multimeric proteins.  相似文献   

14.
Duck delta2-crystallin is a soluble tetrameric lens protein. In the presence of guanidinium hydrochloride (GdnHCl), it undergoes stepwise dissociation and unfolding. Gel-filtration chromatography and sedimentation velocity analysis has demonstrated the dissociation of the tetramer protein to a monomeric intermediate with a dissociation constant of 0.34 microM3. Dimers were also detected during the dissociation and refolding processes. The sharp enhancement of 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence at 1 M GdnHCl strongly suggested that the dissociated monomers were in a molten globule state under these conditions. The similar binding affinity (approximately 60 microM) of ANS to protein in the presence or absence of GdnHCl suggested the potential assembly of crystallins via hydrophobic interactions, which might also produce off-pathway aggregates in higher protein concentrations. The dynamic quenching constant corresponding to GdnHCl concentration followed a multistate unfolding model implying that the solvent accessibility of tryptophans was a sensitive probe for analyzing delta2-crystallin unfolding.  相似文献   

15.
Voltage-gated potassium channels are formed by the tetramerization of their alpha subunits, in a process that is controlled by their conserved N-terminal T1 domains. The crystal structures of Shaker and Shaw T1 domains reveal interesting differences in structures that are contained within a highly conserved BTB/POZ domain fold. The most surprising difference is that the Shaw T1 domain contains an intersubunit Zn2+ ion that is lacking in the Shaker T1 domain. The Zn2+ coordination motif is conserved in other non-Shaker channels making this the most distinctive difference between these channels and Shaker. In this study we show that Zn2+ is an important co-factor for the tetramerization of isolated Shaw and Shal T1 domains. Addition of Zn2+ increases the amount of tetramer formed, whereas chelation of Zn2+ with phenanthroline blocks tetramerization and causes assembled tetramers to disassemble. Within an intact cell, full-length Shal subunits containing Zn2+ site mutations also fail to form functional channels, with the majority of the protein found to remain monomeric by size exclusion chromatography. Therefore, zinc-mediated tetramerization also is a physiologically important event for full-length functional channel formation.  相似文献   

16.
Felis domesticus allergen 1(Fel d 1) is a 35 kDa tetrameric glycoprotein formed by two heterodimers which elicits IgE responses in 95% of patients with allergy to cat. We have previously established in vitro conditions for the appropriate folding of recombinant Fel d 1 using a direct linkage of chain 1 to chain 2 (construct Fel d 1 (1+2)) and chain 2 to chain 1 (construct Fel d 1 (2+1)). Although the crystal structure of Fel d 1 (2+1) revealed a striking structural similarity to that of uteroglobin, a steroid-inducible cytokine-like molecule with anti-inflammatory and immunomodulatory properties, no functional tetrameric form of Fel d 1 could be identified. Here we present the crystal structure of the Fel d 1 (1+2) tetramer at 1.6 A resolution. Interestingly, the crystal structure of tetrameric Fel d 1 reveals two different calcium-binding sites. Symmetrically positioned on each side of the Fel d 1 tetramer, the external Ca(2+)-binding sites correspond to a putative Ca(2+)-binding site previously suggested for uteroglobin. The second Ca(2+)-binding site lies within the dimerization interface, stabilizing the formation of the Fel d 1 tetramer, and inducing important local conformational changes that directly govern the shape of two water-filled cavities. The crystal structure suggests a potential portal for an unknown ligand. Alternatively, the two cavities could be used by the allergen as a conditional inner space allowing for the spatial rearrangement of centrally localized side-chains, such as Asp130, without altering the overall fold of the molecule. The striking structural similarity of the major cat allergen to uteroglobin, coupled to the identification in the present study of a common Ca(2+)-binding site, let us speculate that Fel d 1 could provoke an allergic response through the modulation of phospholipase A2, by sequestering Ca ions in a similar manner as previously suggested for uteroglobin.  相似文献   

17.
Whereas melittin at micromolar concentrations is unfolded under conditions of low salt at neutral pH, it transforms to a tetrameric alpha-helical structure under several conditions, such as high peptide concentration, high anion concentration, or alkaline pH. The anion- and pH-dependent stabilization of the tetrameric structure is similar to that of the molten globule state of several acid-denatured proteins, suggesting that tetrameric melittin might be a state similar to the molten globule state. To test this possibility, we studied the thermal unfolding of tetrameric melittin using far-UV CD and differential scanning calorimetry. The latter technique revealed a broad but distinct heat absorption peak. The heat absorption curves were consistent with the unfolding transition observed by CD and were explainable by a 2-state transition mechanism between the tetrameric alpha-helical state and the monomeric unfolded state. From the peptide or salt-concentration dependence of unfolding, the heat capacity change upon unfolding was estimated to be 5 kJ (mol of tetramer)-1 K-1 at 30 degrees C and decreased with increasing temperature. The observed change in heat capacity was much smaller than that predicted from the crystallographic structure (9.2 kJ (mol of tetramer)-1 K-1), suggesting that the hydrophobic residues of tetrameric melittin in solution are exposed in comparison with the crystallographic structure. However, the results also indicate that the structure is more ordered than that of a typical molten globule state. We consider that the conformation is intermediate between the molten globule state and the native state of globular proteins.  相似文献   

18.
The Shaker type voltage-gated potassium (K+) channel consists of four pore-forming Kv alpha subunits. The channel expression and kinetic properties can be modulated by auxiliary hydrophilic Kv beta subunits via formation of heteromultimeric Kv alpha-Kv beta complexes. Because each (Kv alpha)4 could recruit more than one Kv beta subunit and different Kv beta subunits could potentially interact, the stoichiometry of alpha-beta and beta-beta complexes is therefore critical for understanding the functional regulation of Shaker type potassium channels. We expressed and purified Kv beta 2 subunit in Sf9 insect cells. The purified Kv beta 2, examined by atomic force and electron microscopy techniques, is found predominately as a square-shaped tetrameric complex with side dimensions of 100 x 100 A2 and height of 51 A. Thus, Kv beta 2 is capable of forming a tetramer in the absence of pore-forming alpha subunits. The center of the Kv beta 2 complex was observed to be the most heavily stained region, suggesting that this region could be part of an extended tubular structure connecting the inner mouth of the ion permeation pathway to the cytoplasmic environment.  相似文献   

19.
Here we present the structure of the T1 domain derived from the voltage-dependent potassium channel Kv1.3 of Homo sapiens sapiens at 1.2 Å resolution crystallized under near-physiological conditions. The crystals were grown without precipitant in 150 mM KPi, pH 6.25. The crystals show I4 symmetry typical of the natural occurring tetrameric assembly of the single subunits. The obtained structural model is based on the highest resolution currently achieved for tetramerization domains of voltage-gated potassium channels. We identified an identical fold of the monomer but inside the tetramer the single monomers show a significant rotation which leads to a different orientation of the tetramer compared to other known structures. Such a rotational movement inside the tetrameric assembly might influence the gating properties of the channel. In addition we see two distinct side chain configurations for amino acids located in the top layer proximal to the membrane (Tyr109, Arg116, Ser129, Glu140, Met142, Arg146), and amino acids in the bottom layer of the T1-domain distal from the membrane (Val55, Ile56, Leu77, Arg86). The relative populations of these two states are ranging from 50:50 for Val55, Tyr109, Arg116, Ser129, Glu140, 60:40 for Met142, 65:35 for Arg86, 70:30 for Arg146, and 80:20 for Ile56 and Leu77. The data suggest that in solution these amino acids are involved in an equilibrium of conformational states that may be coupled to the functional states of the whole potassium channel.  相似文献   

20.
Lu J  Robinson JM  Edwards D  Deutsch C 《Biochemistry》2001,40(37):10934-10946
For voltage-gated K+ channels (Kv), it is not clear at which stage during biosynthesis in the endoplasmic reticulum (ER) oligomerization occurs, specifically whether it can begin while nascent peptide chains of individual subunits are still attached to ribosomes. Kv channels possess a T1-recognition domain in the NH2-terminus, which confers subfamily specificity for intersubunit assembly and forms a tetramer. Using pairs of cysteines engineered into the T1-T1 interface and cross-linking methods, we show that specific residues in the T1-T1 interface of different Kv1.3 subunits come into close proximity in the ER, both in microsomal membranes and in Xenopus oocytes. Furthermore, using translocation intermediates containing pairs of engineered cysteines in the T1 interface, we demonstrate that specific residues in the folded T1 domain interface can approach within 2 A of each other and form tetramers while the nascent Kv1.3 peptides are still attached to ribosomes and have translocated across the membrane. ER membranes are required for this interaction, and T1-T1 interactions occur inter-polysomally. Thus, folding of the T1 domain and intersubunit interaction may represent the first assembly event in channel formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号