首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Huntington disease (HD) mutation has been localized to human chromosome 4p16, in a 6-Mb region between the D4S10 locus and the 4p telomere. In a report by Robbins et al., a family was identified in which an affected individual failed to inherit three alleles within the 6-Mb region originating from the parental HD chromosome. To explain these results, it was suggested that the HD locus (HD) lies close to the telomere and that a recombination event took place between HD and the most telomeric marker examined, D4S90. As a test of this telomere hypothesis, we examined six members of this family, five of whom are affected with HD, for the segregation of 12 polymorphic markers from 4p16, including D4S169, which lies within 80 kb of the 4p telomere. We separated, in somatic cell hybrids, the chromosomes 4 from each family member, to determine the phase of marker alleles on each chromosome. We excluded nonpaternity by performing DNA fingerprint analyses on all six family members, and we found no evidence for chromosomal rearrangements when we used high-resolution karyotype analysis. We found that two affected siblings, including one of the patients originally described by Robbins et al., inherited alleles from the non-HD chromosome 4 of their affected parents, throughout the 6-Mb region. We found that a third affected sibling, also studied by Robbins et al., inherited alleles from the HD chromosome 4 of the affected parent, throughout the 6-Mb region. Finally, we found that a fourth sibling, who is likely affected with HD, has both a recombination event within the 6-Mb region and an additional recombination event in a more centromeric region of the short arm of chromosome 4. Our results argue against a telomeric location for HD and suggest that the HD mutation in this family is either associated with DNA predisposed to double recombination and/or gene conversion within the 6-Mb region or is in a gene that is outside this region and that is different from that mutated in most other families with HD.  相似文献   

2.
To facilitate identification of additional DNA markers near and on opposite sides of the Huntington disease (HD) gene, we developed a panel of somatic-cell hybrids that allows accurate subregional mapping of DNA fragments in the distal portion of 4p. By means of the hybrid-cell mapping panel and a library of DNA fragments enriched for sequences from the terminal one-third of the short arm of chromosome 4, 105 DNA fragments were mapped to six different physical regions within 4p15-4pter. Four polymorphic DNA fragments of particular interest were identified, at least three of which are distal to the HD-linked D4S10 (G8) locus, a region of 4p previously devoid of DNA markers. Since the HD gene has also recently been shown to be distal to G8, these newly identified DNA markers are in the direction of the HD gene from G8, and one or more of them may be on the opposite side of HD from G8.  相似文献   

3.
4.
The defect causing Huntington disease (HD) has been mapped to 4p16.3, distal to the DNA marker D4S10. Subsequently, additional polymorphic markers closer to the HD gene have been isolated, which has led to the establishment of predictive testing programs for individuals at risk for HD. Approximately 17% of persons presenting to the Canadian collaborative study for predictive testing for HD have not received any modification of risk, in part because of limited informativeness of currently available DNA markers. Therefore, more highly polymorphic DNA markers are needed, which will further increase the accuracy and availability of predictive testing, specifically for families with complex or incomplete pedigree structures. In addition, new markers are urgently needed in order to refine the breakpoints in the few known recombinant HD chromosomes, which could allow a more accurate localization of the HD gene within 4p16.3 and, therefore, accelerate the cloning of the disease gene. In this study we present the identification and characterization of nine new polymorphic DNA markers, including three markers which detect highly informative multiallelic VNTR-like polymorphisms with PIC values of up to .84. These markers have been isolated from a cloned region of DNA which has been previously mapped approximately 1,000 kb from the 4p telomere.  相似文献   

5.
The Huntington disease (HD) gene has been mapped 4 cM distal to D4S10 within the telomeric chromosome band, 4p16.3. The published physical map of this region extends from D4S10 to the telomere but contains two gaps of unknown size. Recombination events have been used to position the HD mutation with respect to genetic markers within this region, and one such event places the gene proximal to D4S168, excluding the distal gap as a possible location for the defect. One previously published recombination event appeared to have excluded the proximal gap. We have reassessed this event and have moved the proximal boundary for the HD candidate region centromeric to the gap within a "hot spot" for recombination between D4S10 and D4S125. We have closed the proximal gap and report here the complete physical map spanning the HD candidate region from D4S10 to D4S168, the maximum size of which can now be placed accurately at 2.5 Mb.  相似文献   

6.
Huntington disease (HD) is caused by a genetic defect distal to the anonymous DNA marker D4S10 in the terminal cytogenetic subband of the short arm of chromosome 4 (4p16.3). The effort to identify new markers linked to HD has concentrated on the use of somatic cell hybrid panels that split 4p16.3 into proximal and distal portions. Here we report two new polymorphic markers in the proximal portion of 4p16.3, distal to D4S10. Both loci, D4S126 and D4S127, are defined by cosmids isolated from a library enriched for sequences in the 4pter-4p15.1 region. Physical mapping by pulsed-field gel electrophoresis places D4S126 200 kb telomeric to D4S10, while D4S127 is located near the more distal marker D4S95. Typing of a reference pedigree for D4S126 and D4S127 and for the recently described VNTR marker D4S125 has firmly placed these loci on the existing linkage map of 4p16.3. This genetic analysis has revealed that the region immediately distal to D4S10 shows a dramatically higher rate of recombination than would be expected based on its physical size. D4S10-D4S126-D4S125 span 3.5 cM, but only 300-400 kb of DNA. Consequently, this small region accounts for most of the reported genetic distance between D4S10 and HD. By contrast, it was not possible to connect D4S127 to D4S125 by physical mapping, although they are only 0.3 cM apart. A more detailed analysis of recombination sites within the immediate vicinity of D4S10 could potentially reveal the molecular basis for this phenomenon; however, it is clear that the rate of recombination is not continuously increased with progress toward the telomere of 4p.  相似文献   

7.
Comparative mapping in man and mouse has revealed frequent conservation of chromosomal segments, offering a potential approach to human disease genes via their murine homologs. Using DNA markers near the Huntington disease gene on the short arm of chromosome 4, we defined a conserved linkage group on mouse chromosome 5. Linkage analyses using recombinant inbred strains, a standard outcross, and an interspecific backcross were used to assign homologs for five human loci, D4S43, D4S62, QDPR, D4S76, and D4S80, to chromosome 5 and to determine their relationships with previously mapped markers for this autosome. The relative order of the conserved loci was preserved in a linkage group that spanned 13% recombination in the interspecific backcross analysis. The most proximal of the conserved markers on the mouse map, D4S43h, showed no recombination with Emv-1, an endogenous ecotropic virus, in 84 outcross progeny and 19 recombinant inbred strains. Hx, a dominant mutation that causes deformities in limb development, maps approximately 2 cM proximal to Emv-1. Since the human D4S43 locus is less than 1 cM proximal to HD near the telomere of chromosome 4, the murine counterpart of the HD gene might lie between Hx and Emv-1 or D4S43h. Cloning of the region between these markers could generate new probes for conserved human sequences in the vicinity of the HD gene or possibly candidates for the murine counterpart of this human disease locus.  相似文献   

8.
The genetic defect causing Huntington disease (HD) has been mapped to 4p16.3 by linkage analysis using DNA markers. Two apparently contradictory classes of recombination events in HD kindreds preclude precise targeting of efforts to clone the disease gene. Here, we report a new recombination event that increases support for an internal candidate region of 2.5 Mb between D4S10 and D4S168. Analysis of 23 DNA polymorphisms in 4p16.3 revealed a complex pattern of association with the disease gene that failed to narrow the size of the candidate region. The degree of linkage disequilibrium did not show a continuous increase across the physical map, nor was a region of extreme disequilibrium identified. Markers displaying no association with the disorder were interspersed with and, in many cases, close to markers displaying significant disequilibrium. Comparison of closely spaced marker pairs on normal and HD chromosomes, as well as analysis of haplotypes across the HD region, suggest that simple recombination subsequent to a single original HD mutation cannot easily explain the pool of HD chromosomes seen today. A number of different mechanisms could contribute to the diversity of haplotypes observed on HD chromosomes, but it is likely that there has been more than one and possibly several independent origins of the HD mutation.  相似文献   

9.
A DNA probe (D4S95) that detects a variable number of tandem repeats and a single-site-variation polymorphism after digestion with a single restriction enzyme, AccI, has previously been described. The order of this probe relative to the gene for Huntington disease (HD) and other previously described markers has not been established. Analysis of 24 affected families with HD has shown that D4S95 is in tight linkage with the gene causing HD, with a maximal Lod score of 12.489 at a theta of .03. D4S90 is a probe which maps to 4p16.3, telomeric to D4S95, and detects polymorphisms with HincII and other enzymes. In one affected person, recombination has occurred between D4S10 and HD, between D4S95 and HD, and in all likelihood also between D4S90 and HD, which strongly suggests that the gene for HD is telomeric to all these DNA probes. This suggests that the gene causing HD is located in the most distal region of the short arm of chromosome 4, flanked by D4S90 and the telomere, and supports the locus order D4S10-D4S95-D4S90-HD-telomere. D4S95 is a most useful DNA marker for predictive testing programs, while D4S90 will serve as a useful starting point for identifying DNA fragments closer to the gene for HD.  相似文献   

10.
The candidate region for the Huntington disease (HD) gene has been narrowed down to a 2.2-Mb region between D4S10 and D4S98 on the short arm of chromosome 4. To map the HD gene within this candidate region 65 Dutch HD families were studied. In total 338 informative meioses were analyzed and 11 multiple informative crossovers were detected. Assuming a minimum number of recombinations and no double recombinations, our multiple informative crossovers are consistent with one specific genetic order for 12 loci: D4S10-(D4S81, D4S126)-D4S125-(D4S127, D4S95)-D4S43-(D4S115, D4S96, D4S111, D4S90, D4S141). This is in agreement with the known data derived from similar and other methods. The loci between brackets could not be mapped relative to each other. In our family material, two informative three-point marker recombination events were detected in the proximal HD candidate region, which are also informative for HD. Both recombination events map the HD gene distal to D4S81 and most likely distal to D4S125, narrowing down the HD candidate region to a 1.7-Mb region between D4S125 and D4S98.  相似文献   

11.
A radiation-induced hybrid cell line containing 10-20 million base pairs of DNA derived from the terminal part of human 4p16 in a background of hamster chromosomes has been used to construct a genomic library highly enriched for human sequences located close to the Huntington disease (HD) gene. Recombinant phage containing human inserts were isolated from this library and used as hybridization probes against two other radiation hybrids containing human fragments with chromosomal breaks in 4p16 and against a human-hamster somatic cell hybrid that retains only the 4p15-4pter part of chromosome 4. Of 121 human phage tested, 6 were mapped distal to the HD-linked D4S10 locus. Since the HD gene is located between D4S10 and the 4p telomere, all of these sequences are likely to be closer to HD than D4S10, and any one of them may be a distal flanking marker for the disease locus. Long-range restriction map analysis performed with a field-inversion gel system shows that the six new loci are distributed in different places within 4p16. Although it is not possible to establish an order for the six sequences with the FIGE data, the results demonstrate that the region detected by these probes must span at least 2000 kb of DNA.  相似文献   

12.
The gene for Huntington disease (HD) has been localized close to the telomere on the short arm of chromosome 4. However, refined mapping using recombinant HD chromosomes has resulted in conflicting findings and mutually exclusive candidate regions. Previously reported significant nonrandom allelic association between D4S95 and HD provided support for a more proximal location for the defective gene. In this paper, we have analyzed 17 markers, spanning approximately 6 Mb of DNA distal to locus D4S62, for nonrandom association to HD. We confirm the previous findings of nonrandom allelic association between D4S95 and HD. In addition, we provide new data showing significant nonrandom association between HD and 3 markers at D4S133 and D4S228, which are approximately 3 Mb telomeric to D4S95.  相似文献   

13.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder of late onset, characterized by progressive motor disturbance, psychological manifestations, and intellectual deterioration. The HD gene has been genetically mapped by linkage to the DNA marker D4S10, but the exact physical location of the HD defect has remained uncertain. To delineate critical recombination events revealing the physical position of the HD gene, we have identified restriction fragment length polymorphisms for two recently mapped chromosome 4 loci, RAF2 and D4S62, and determined the pattern of segregation of these markers in both reference and HD pedigrees. Multipoint linkage analysis of the new markers with D4S10 and HD establishes that the HD gene is located in a very small physical region at the tip of the chromosome, bordered by D4S10 and the telomere. A crossover within the D4S10 locus orients this segment on the chromosome, providing the necessary information for efficient application of directional cloning strategies for progressing toward, and eventually isolating, the HD gene.  相似文献   

14.
Significant linkage disequilibrium has been found between the Huntington disease (HD) gene and DNA markers located around D4S95 and D4S98. The linkage-disequilibrium studies favor the proximal location of the HD gene, in contrast to the conflicting results of recombination analyses. We have analyzed 45 Dutch HD families with 19 DNA markers and have calculated the strength of linkage disequilibrium. Highly significant linkage disequilibrium has been detected with D4S95, consistent with the studies in other populations. In contrast with most other studies, however, the area of linkage disequilibrium extends from D4S10 proximally to D4S95, covering 1,100 kb. These results confirm that the HD gene most likely maps near D4S95.  相似文献   

15.
Allele frequencies of 14 different restriction fragment length polymorphisms from 12 DNA markers within the Huntington disease (HD) region were evaluated in the German population. No significant differences from published data of allele frequencies from chromosomes of Caucasian ancestry were found. The analysis of eight DNA polymorphisms in 87 HD families of German origin revealed significant non-random association with the HD locus and the D4S95 locus (p674/AccI/MboI), a result that is consistent with all other published studies. These results are confirmed by the fact that the HD gene maps to this region.  相似文献   

16.
A consanguineous family affected by an autosomal recessive, progressive neurodegenerative Huntington-like disorder, was tested to rule out juvenile-onset Huntington disease (JHD). The disease manifests at approximately 3-4 years and is characterized by both pyramidal and extrapyramidal abnormalities, including chorea, dystonia, ataxia, gait instability, spasticity, seizures, mutism, and intellectual impairment. Brain magnetic resonance imaging (MRI) findings include progressive frontal cortical atrophy and bilateral caudate atrophy. Huntington CAG trinucleotide-repeat analyses ruled out JHD, since all affected individuals had repeat numbers within the normal range. The presence of only four recombinant events (straight theta=.2) between the disease and the Huntington locus in 20 informative meioses suggested that the disease localized to chromosome 4. Linkage was initially achieved with marker D4S2366 at 4p15.3 (LOD 3.03). High-density mapping at the linked locus resulted in homozygosity for markers D4S431 and D4S394, which span a 3-cM region. A maximum LOD score of 4.71 in the homozygous interval was obtained. Heterozygosity at the distal D4S2366 and proximal D4S2983 markers defines the maximum localization interval (7 cM). Multiple brain-related expressed sequence tags (ESTs) with no known disease association exist in the linkage interval. Among the three known genes residing in the linked interval (ACOX3, DRD5, QDPR), the most likely candidate, DRD5, encoding the dopamine receptor D5, was excluded, since all five affected family members were heterozygous for an intragenic dinucleotide repeat. The inheritance pattern and unique localization to 4p15.3 are consistent with the identification of a novel, autosomal recessive, neurodegenerative Huntington-like disorder.  相似文献   

17.
We report both a recombination event that places the Huntington disease gene proximal to the marker D4S98 and an extended linkage-disequilibrium study that uses this marker and confirms the existence of disequilibrium between it and the HD locus. We also report the cloning of other sequences in the region around D4S98, including a new polymorphic marker R10 and conserved sequences that identify a gene in the region of interest.  相似文献   

18.
Utilizing the CEPH reference panel and genotypic data for 53 markers, we have constructed a 20-locus multipoint genetic map of human chromosome 4. New RFLPs are reported for four loci. The map integrates a high-resolution genetic map of 4p16 into a continuous map extending to 4q31 and an unlinked cluster of three loci at 4q35. The 20 linked markers form a continuous linkage group of 152 cM in males and 202 cM in females. Likely genetic locations are provided for 25 polymorphic anonymous sequences and 28 gene-specific RFLPs. The map was constructed employing the LINKAGE and CRIMAP computational methodologies to build the multipoint map via a stepwise algorithm. A detailed 10-point map of the 4p16 region constructed from the CEPH panel provides evidence for heterogeneity in the linkage maps constructed from families segregating for Huntington disease (HD). It additionally provides evidence for position-specific recombination frequencies in the telomeric region of 4p.  相似文献   

19.
Genetic linkage between the marker G8 (D4S10) and Huntington disease (HD) was studied in six Dutch pedigrees. The informativeness of the D4S10 locus was increased by isolation of a cosmid, C5.5, with a G8 subclone used as probe. We present a restriction map of 70 kb in the D4S10 region. Two subclones of C5.5, H5.52 and F5.53, detect MspI and SinI RFLPs, respectively. These probes increase the informativeness of D4S10 in the Dutch HD population from 55% to 95%. Seven recombinations were found in 124 informative meioses in which multipoint segregation of D4S10 haplotypes and the HD locus was studied. Two of the recombinations occurred within the D4S10 region. The other five recombinations are highly valuable for the mapping of present and future markers relative to each other and to the HD gene. In addition, several recombinations between markers in meioses from unaffected parents were noted, which will also be useful in ordering new markers. On the basis of our three-point recombination data, the orientation of the D4S10 region relative to HD is HD-H5.52-G8-F5.53, which independently confirms the previously derived polarity for D4S10.  相似文献   

20.
Genetic fine mapping of the gene for recessive Stargardt disease   总被引:4,自引:0,他引:4  
Stargardt disease (STGD) is one of the most frequent causes of macular degeneration in childhood. Linkage analysis in families with recessive STGD has recently shown genetic homogeneity and a location of the underlying gene at 1p22-p21 in a 4-cM interval. Haplotype analysis in seven Dutch STGD families with 11 highly polymorphic markers spanning the critical region has enabled us to refine the location of the underlying gene to a 2-cM region flanked by the loci D1S406 and D1S236. We have identified one 45-year-old nonpenetrant individual who carries two disease alleles. In another family, an affected individual inherited the paternal but not the maternal disease chromosome, suggesting genetic heterogeneity or a different mechanism leading to the disease in this family. Received: 14 February 1996 / Revised: 25 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号