共查询到11条相似文献,搜索用时 0 毫秒
1.
Summary The fine structure, origin, and distribution density of the autonomic nerve endings in the tarsal muscle of the mouse were studied by histochemistry and electron microscopy. With histochemical methods, the fine nerve plexus in the normal muscle shows both catecholamine-positive varicose fibers and acetylcholinesterase-active varicose fibers. The former are distributed more densely than the latter. After superior cervical ganglionectomy, the catecholamine-positive fibers disappear, while after pterygopalatine ganglionectomy, the acetylcholinesterase-active fibers vanish. In electron micrographs, the varicosities appear as expansions containing many synaptic vesicles. The axonal expansions partly lack a Schwann sheath and directly face the pinocytotic vesicle-rich zones of the smooth muscle cells. A relatively wide space, 0.1 to 1.0 m in width, lies between nerve expansion and muscle cell. The expansions can be classified into two types: Type I having small granular synaptic vesicles, and Type II having agranular vesicles instead of small granular synaptic vesicles. Type I undergoes degeneration after superior cervical ganglionectomy, while Type II degenerates after pterygopalatine ganglionectomy. This indicates that Type I corresponds to the synaptic ending of the adrenergic fiber originating from the superior cervical ganglion, and Type II to the synaptic ending of the cholinergic nerve fiber derived from the pterygopalatine ganglion. Type I is more frequent (88/104 m2 area of muscle) than Type II (17/104 m2). 相似文献
2.
A protein, the mediatophore, has been purified from Torpedo electric organ presynaptic plasma membranes. This protein mediates the release of acetylcholine through artificial membranes when activated by calcium and is made up of 15-kDa proteolipid subunits. After immunization with purified delipidated mediatophore, monoclonal antibodies binding to the 15-kDa proteolipid band on Western blots of purified mediatophore were selected. A 15-kDa proteolipid antigen was also detected in cholinergic synaptic vesicles. Using an immunological assay, it was estimated that presynaptic plasma membranes and synaptic vesicles contain similar proportions of 15-kDa proteolipid antigen. Detection by immunofluorescence in the electric organ showed that only nerve endings were labeled. In electric lobes, the staining was associated with intracellular membranes of the electroneuron cell bodies and in axons. Nerve endings at Torpedo neuromuscular junctions were also labeled with anti-15-kDa proteolipid monoclonal antibodies. 相似文献
3.
Immunohistochemical localization of cholinergic nerve terminals 总被引:13,自引:0,他引:13
Dr. R. Theresa Jones J. H. Walker P. J. Richardson G. Q. Fox V. P. Whittaker 《Cell and tissue research》1981,218(2):355-373
Summary Most of the published light-microscopic methods for the localization of cholinergic nerve pathways present various difficulties of interpretation. The production and characterization of an antiserum that binds specifically to cholinergic terminals is described. The antiserum was raised to small synaptosomes prepared from the purely cholinergic electric organ of Torpedo marmorata. It was shown to lyse cholinergic synaptosomes in a mixed population derived from guinea-pig cortex. After partial purification by adsorption onto nonspecific antigens, it was used to label nerve endings in several tissues of Torpedo, rats and guinea pigs using indirect immunofluorescence histochemistry. The antiserum appears to provide a highly specific means of localizing cholinergic nerve endings in these tissues. 相似文献
4.
Isolation of synaptosomal plasma membranes from cholinergic nerve terminals and a comparison of their proteins with those of synaptic vesicles 总被引:19,自引:0,他引:19
Plasma membranes were purified from purely cholinergic nerve endings (synaptosomes) isolated from the electric organ of Torpedo marmorata. Synaptosomes were lysed, membranes recovered and further separated by density gradient centrifugation. A fraction was obtained enriched in 5'-nucleotidase, Na+, K+-activated ATPase and acetylcholine esterase. Morphological examination showed abundant membrane fragments of the size range of synaptosomes and few of vesicle size. The fraction has a characteristic protein composition upon gel electrophoresis. Five reproducible major bands with apparent Mr of 100000, 75000, 52000, 42000 and 35000--33000 are found. A gel-electrophoretic comparison with proteins from synaptic vesicles from the same source (major bands Mr 160000, 147000, 34000 and 25000) was made. Comigration of major bands was detected in one-dimensional gel electrophoresis with the 42000-Mr, 35000--33000-Mr and 34000-Mr components. Upon two-dimensional gel electrophoresis the 42000-Mr component comigrates with a similar component in vesicles, recently characterized as actin; the other components are different. The presence of tubulin-like polypeptides is unlikely. Beside actin, all major vesicle proteins are often detected in small amounts in the plasma membrane preparation. It cannot be decided if they result from fused or contaminating vesicle membranes, but since they are essentially absent in some preparations, it seems that the plasma membrane does not contain vesicle proteins. 相似文献
5.
In this study we demonstrate differences in the osmotic fragility of two metabolically and physically heterogeneous synaptic vesicle populations from stimulated electromotor nerve terminals. When synaptic vesicles isolated on sucrose density gradients are submitted to solutions of decreasing osmolarity 50% of VP2-type vesicles lysed at (mean + S.E. (number of experiments)) 332 ± 14 (4) mosM and 50% of VP1-type vesicles lysed at 573 ± 8 (3) mosM. These results indicate that recycling vesicles are more resistant to hypo-osmotic lysis and they are consistent with our earlier conclusion that changes in water content on recycling are secondary to changes in the content of the osmotically active small-molecular-mass constituents acetylcholine and ATP. 相似文献
6.
Pierre N. E. De Graan Albrecht Moritz Marina de Wit Willem Hendrik Gispen 《Neurochemical research》1993,18(8):875-881
Several methods have been described previously for the purification of the nervous-tissue specific protein kinase C substrate B-50 (GAP-43). In this paper we present a new purification method for B-50 from rat brain which employs 2-mercaptoethanol to release the protein from isolated synaptosomal plasma membranes. Most likely, 2-mercaptoethanol reduces disulfide bonds involved in the linkage of B-50 to the membrane. After washing the membranes with 100 mM NaCl to detach loosely bound proteins, B-50 is the major protein (and the only protein kinase C substrate) released by 0.5% 2-mercaptoethanol treatment. Further purification to apparent homogeneity is achieved by affinity chromatography on calmodulin sepharose. B-50 binds to calmodulin in the absence of calcium and specifically elutes from the column with 3 mM calcium. The procedures described is simple, rapid and highly suitable for large scale purification of B-50 from rat brain. 相似文献
7.
Marion Vietta Silvana S. Frassetto Ana M. O. Battastini Adriane Bello-Klein Cleci Moreira Renato D. Dias Jao J. F. Sarkis 《Neurochemical research》1996,21(3):299-304
The in vitro effects of membrane lipid peroxidation on ATPase-ADPase activities in synaptic plasma membranes from rat forebrain
were investigated. Treatment of synaptic plasma membranes with an oxidant generating system (H2O2/Fe2+/ascorbate) resulted in lipid peroxidation and inhibition of the enzyme activity. Besides, trolox as a water soluble vitamin
E analogue totally prevented lipid peroxidation and the inhibition of enzyme activity. These results demonstrate the susceptibility
of ATPase-ADPase activities of synaptic plasma membranes to free radicals and suggest that the protective effect against lipid
peroxidation by trolox prevents the inhibition of enzyme activity. Thus, inhibition of ATPase-ADPase activities of synaptic
plasma membranes in cerebral oxidative stress probably is related to lipid peroxidation in the brain. 相似文献
8.
Samhan-Arias AK Duarte RO Martín-Romero FJ Moura JJ Gutiérrez-Merino C 《Archives of biochemistry and biophysics》2008,469(2):243-254
Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1 mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of these membranes. In the presence of NADH, but not NADPH, SPMV catalyse a rapid recycling of AFR which further lower the AFR concentration below 0.05 μM. These results correlate with the nearly 10-fold higher NADH oxidase over NADPH oxidase activity of SPMV. SPMV has NADH-dependent coenzyme Q reductase activity. In the presence of ascorbate the stimulation of the NADH oxidase activity of SPMV by coenzyme Q1 and cytochrome c can be accounted for by the increase of the AFR concentration generated by the redox pairs ascorbate/coenzyme Q1 and ascorbate/cytochrome c. The NADH:AFR reductase activity makes a major contribution to the NADH oxidase activity of SPMV and decreases the steady-state AFR concentration well below the micromolar concentration range. 相似文献
9.
Summary Synaptogenesis has been studied in the electric organ of embryonic Torpedo marmorata by use of two antisera directed against components of synaptic vesicles (anti-SV) and presynaptic plasma membranes (ap-anti-TSM), respectively. The anti-SV serum was previously shown to recognize a proteoglycan specific for synaptic vesicles. The ap-anti-TSM serum was raised to plasma membranes of synaptosomes derived from the electromotor nerve terminals and affinity-purified on electric-organ gangliosides. The vesicular antigen was first detectable at the 81-mm stage of development, which is 1–2 weeks earlier than the formation of morphologically mature presynaptic terminals, but is coincident with a rise in choline acetyltransferase levels and the ability of the electric organ to generate discharges. The gangliosidic antigen recognized by the ap-anti-TSM was first detectable on the ventral electrocyte surface at the 93-mm stage of development. This indicates that specific carbohydrate epitopes, not present on the growth cones, are expressed during maturation of the nerve terminal. The nerve terminal components recognized by these sera arose pari passu with neurite coverage of the ventral surface of the electrocyte, reaching a maximum in the adult. In contrast, postsynaptic aggregates of acetylcholine receptor, rendered visible with rhodamine-labeled -bungarotoxin, arose previous to the presynaptic antigens, reaching a maximum surface density at 110 mm and then declining in the adult. 相似文献
10.
S Araki A Kikuchi Y Hata M Isomura Y Takai 《The Journal of biological chemistry》1990,265(22):13007-13015
We have previously purified from bovine brain cytosol a novel regulatory protein for smg p25A, a ras p21-like GTP-binding protein. This protein, named smg p25A GDP dissociation inhibitor (GDI), regulates the GDP/GTP exchange reaction of smg p25A by inhibiting the dissociation of GDP from and thereby the subsequent binding of GTP to it. We have also previously found that smg p25A is mainly localized in presynaptic plasma membranes and vesicles and moderately in presynaptic cytosol in rat brain synapses. In this paper, we have studied the possible involvement of smg p25A GDI in the localization of smg p25A in the cytosol, plasma membranes, and vesicles in rat brain synapses. Both the GDP- and GTP-bound forms of smg p25A bound to the synaptic membranes and vesicles. smg p25A GDI inhibited the binding of the GDP-bound form of smg p25A, but not that of the GTP-bound form, to the synaptic membranes and vesicles. Moreover, smg p25A GDI induced the dissociation of the GDP-bound form, but not that of the GTP-bound form, of both endogenous and exogenous smg p25As from the synaptic membranes and vesicles. smg p25A GDI made a complex with the GDP-bound form of smg p25A with a molar ratio of 1:1, but not with the GTP-bound or guanine nucleotide-free form. These results suggest that smg p25A reversibly binds to synaptic plasma membranes and vesicles and that this reversible binding is regulated by its specific GDI. 相似文献
11.
The plant plasma membrane contains a 1,3-β-glucan synthase (EC 2.4.1.34) which has its active site on the cytoplasmic side of the membrane, while the product, the cell wall component callose, is deposited on the apoplastic side of the membrane. This enzyme should therefore be an integral, transmembrane protein. The activity of the enzyme is stimulated by Ca2+ , polyamines, and polyols. Using sealed, inside-out (cytoplasmic side out) plasma membrane vesicles from sugar beet ( Beta vulgaris L.) leaves, which permits the activity to be measured without solubilization of the membrane, we have localized the activator sites for Ca2+ , spermine, and cellobiose to the cytoplasmic side of the plasma membrane. 相似文献