首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic metabolism of 4-[3H]acetanilide in vivo and in vitro yields 4-hydroxyacetanilide which retains, respectively, 40 and 62% of the tritium. When the 4-tritio-substrate contains adjacent deuteriums the retention of tritium is reduced to 26 and 40%. Hepatic metabolism of 4-[3H]anisole in vivo and in vitro yields 4-hydroxyanisole with 78% of the tritium. This retention is reduced to 62% in the corresponding 3,5-[2H2]-4[3H]anisole. Similarly, the retention of tritium in trans-4-hydroxycinnamic acid derived by metabolism of trans-[4-3H]cinnamic acid with chick pea microsomes is reduced from 91% to 68% by the presence of adjacent deuteriums in the substrate. Hydroxylation at the 4-position does not result in selective loss of tritium from the 3-position of acetanilide, anisole, or cinnamic acid. The above isotope effects indicate that isomerization of the probable arene oxide intermediates proceeds mainly via the keto-tautomer of the phenolic product.  相似文献   

2.
The release of tritium from [7-3H2]dopamine was investigated as a possible procedure for the assay for dopamine-β-hydroxylase (DβH) in rat and human serum. The release was found to have the same characteristics as those deseribed previously for DβH in serum; for example, an optimum rate of reaction at pH 5.0 or an enhancement of release with agents such as Cu2+ ions and N-ethylmaleimide which are known to inactivate endogenous inhibitors of DβH in serum. Tritium release was blocked by the DβH inhibitor fusaric acid but not by inhibitors of other dopamine-metabolizing enzymes in serum. Incubation of 14C-labeled dopamine along with [7-3H2]dopamine revealed that, under the standard assay conditions, the formation of [14C]norepinephrine was accompanied by release of one of the two tritium atoms on the 7-carbon. It was concluded that the procedure provided a simple and sensitive assay of DβH activity in serum.  相似文献   

3.
A radiometric assay for the in vitro metabolism of zoxazolamine has been developed which combines high sensitivity and rapid determination of product. [4,6-3H]zoxazolamine was metabolized to 6-hydroxyzoxazolamine, and the tritium released as 3H2O was determined after treating the incubation mixture with activated charcoal. This treatment efficiently removes labeled substrate (99.98%), permitting enzymatically released tritium to be measured directly in the aqueous medium. Since the preponderant in vitro product of zoxazolamine metabolism by rat liver microsomes and the purified reconstituted mixed function oxidase system is 6-hydroxyzoxazolamine, and since this aryl hydroxylation occurs without significant NIH shift, the subsequent release of tritium from the 6-position accurately represents metabolism of the molecule. The use of [4,6-3H]zoxazolamine for a tritium release assay of mixed function oxidase activity is ideal since this compound shows no significant isotope effect or NIH shift during metabolic conversion to 6-hydroxyzoxazolamine. 3-Methylcholanthrene treatment of rats resulted in a fourfold induction of zoxazolamine hydroxylation while phenobarbital or pregnenolone 16α-carbonitrile pretreatment caused only a 20–50% increase in zoxazolamine metabolism. The use of a purified reconstituted system revealed that cytochrome P-448 from 3-methylcholanthrene-treated rats was approximately 10- to 15-fold more efficient than cytochrome P-450 from phenobarbital-treated rats in catalyzing the hydroxylation of zoxazolamine.  相似文献   

4.
A rapid and sensitive kinetic assay of lanosterol 14α-demethylation has been developed and analyzed. Three substrates, [32-3H]-24,25-dihydrolanosterol, [32-3H]lanost-8-en-3β,32-diol, and [32-3H]lanost-7-en-3β-32-diol, were studied. In all cases, the rate of tritium released into aqueous solution provided a simple and direct assay of 14α-demethylase activity. The kinetic parameters of Km and Vmax for each substrate have been determined in a reconstituted system from rat liver. The percentage of turnover monitored by the novel tritium release assay was comparable to that observed by conventional GC methods. Separation of unreacted sterol from tritiated formate and water via reverse-phase chromatography permitted several samples to be analyzed at once.  相似文献   

5.
Certain members of the cytochromes P450 superfamily metabolize polyunsaturated long-chain fatty acids to several classes of oxygenated metabolites. An approach based on in silico analysis predicted that Streptomyces peucetius CYP107N3 might be a fatty acid-metabolizing enzyme, showing high homology with epoxidase enzymes. Homology modeling and docking studies of CYP107N3 showed that oleic acid can fit directly into the active site pocket of the double bond of oleic acid within optimum distance of 4.6 Å from the Fe. In order to confirm the epoxidation activity proposed by in silico analysis, a gene coding CYP107N3 was expressed in Escherichia coli. The purified CYP107N3 was shown to catalyze C9-C10 epoxidation of oleic acid in vitro to 9,10-epoxy stearic acid confirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis. [BMB Reports 2012; 45(12): 736-741]  相似文献   

6.
Charcoal was found to catalyze the release of 3H2O from [1-3H]2-hydroxyestradiol-17β ([1-3H]2-OHE2) or [4-3H]2-hydroxy-estradiol-17β ([4-3H]2-OHE2) and this effect was shown to occur in the presence of glutathione or other thiols and to depend on the concentration of free steroid. The radiometric assay for measuring the formation of 3H2O was not affected significantly by subsequent treatment of the incubation mixture with charcoal if the ratio of steroid to tissue (rat brain or liver microsomes) was low and only initial rates of 3H release were measured. 2-Hydroxyestradiol did not show the charcoal effect in the presence of tyrosinase, either when it was generated from its parent estrogen or added to the enzyme. The formation of 3H2O from [4-3H]2-OHE2 in the presence of glutathione was inhibited by ascorbic acid but the addition of dextran or albumin did not protect the catechol estrogen from the charcoal-catalyzed loss of tritium. The reaction with glutathione and charcoal occurred even at 4°C but other adsorbants such as alumina, silica or hydroxylapatite were without effect.  相似文献   

7.
Cutin, the structural component of plant cuticle, is a polymer of C16 and C18 hydroxy fatty acids. Previous results have suggested that oleic acid undergoes ω-hydroxylation, epoxidation of the double bond, and, finally, hydration of the epoxide to give rise to the three major components of the C18 family of cutin acids. 18-Hydroxy [18-3H]oleic acid and 18-hydroxy-9,10-epoxy[18-3H]stfaric acid have been synthesized and, with these synthetic substrates, the conversion of 18-hydroxyoleic acid to 18-hydroxy-9,10-epoxystearic acid and the hydrolysis of 18-hydroxy-9,10-epoxystearic acid to 9,10,18-trihydroxystearic acid were directly demonstrated in apple fruit skin and in the leaves of apple and Senecio odoris. Trichloropropene oxide, an inhibitor of microsomal epoxide hydrases of animals, specifically inhibited the conversion of [1-14C]oleic acid into 18-hydroxy-9,10-epoxystearic acid and 9,10,18-trihydroxystearic acid, while it had no effect on the conversion of [1-14C]palmitic acid into hydroxylated palmitic acid, a process which does not involve epoxy acid intermediates. Therefore, it appears that this inhibitor affects epoxidation and or epoxide hydration steps involved in cutin biosynthesis.  相似文献   

8.
Tomany MJ  Kent SS 《Plant physiology》1986,80(4):1055-1058
When ribulose-1,5-bisphosphate carboxylase is assayed under N2 using [3H]ribulose 1,5-bisphosphate and 14CO2, [3H]3-phosphoglycerate and [14C]3-phosphoglycerate are produced in nonstoichiometric amounts in a ratio which approaches 7 at low concentrations of CO2 (2 micromolar) assuming a 1:1 ratio at Vmax (280 micromolar). The log of the molar ratio varies as a linear function of log[CO2]. Nonstoichiometry could be explained by CO2 contaminatio of the reactants or tritium contamination of the products. However, the magnitude of CO2 contamination required (18 ± 4 micromolar) is far in excess of controlled CO2 (<0.1 micromolar), and the required tritium contaminant would have to vary from 30 to 85% of the purified 3-phosphoglycerate at the 58 and 2 micromolar CO2 assay levels, respectively. This contrasts with detectable tritium contamination which is only 1 to 4% and correctable. Nonstoichiometry is evident using either 1 or 5 labeled [3H]ribulose 1,5-bisphosphate. When 3-phosphoglycerate is reisolated as glycerate the 3H/14C ratio remains unchanged.  相似文献   

9.
(2R)-[3H]Isovaleric acid and (2S)-[3H]isovaleric acid (ammonium salts) have been synthesized. These substances, mixed with [1-14C]isovalerate, have been administered to biotin-deficient rats, which accumulate β-hydroxyisovaleric acid in their urine, the metabolite being formed via isovaleryl-CoA and β-methylcrotonyl-CoA. The results show that most of the tritium from (2R)-[3H]isovalerate was lost, and most of the tritium from (2S)-[3H]isovalerate retained in the conversion to β-hydroxyisovalerate. The stereochemistry of the isovaleryl-CoA dehydrogenase reaction is compared with the stereochemistry of other short-chain acyl-CoA dehydrogenase reactions.  相似文献   

10.
Measurement of isotope ratios in 1α,2α,3β-trihydroxy-p-menthane, which has been biosynthesized in Fusicoccum amygdali from 3H- and 14C-labelled mevalonate and in its degradation product diosphenol indicates that: (a) four tritium atoms arising from [5-3H2, 2-14C]MVA are retained, one more than suggested from the hydroxylation pattern, (b) menth-2-ene-1-ol is generated from an α-terpinyl cation through a 1,3-hydride shift and (c) trans-cleavage of an α-epoxide by hydrolysis gives 1α,2α,3β-trihydroxy-p-menthane.  相似文献   

11.
Propofol acts as a positive allosteric modulator of γ-aminobutyric acid type A receptors (GABAARs), an interaction necessary for its anesthetic potency in vivo as a general anesthetic. Identifying the location of propofol-binding sites is necessary to understand its mechanism of GABAAR modulation. [3H]2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (azietomidate) and R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), photoreactive analogs of 2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (etomidate) and mephobarbital, respectively, have identified two homologous but pharmacologically distinct classes of intersubunit-binding sites for general anesthetics in the GABAAR transmembrane domain. Here, we use a photoreactive analog of propofol (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol ([3H]AziPm)) to identify propofol-binding sites in heterologously expressed human α1β3 GABAARs. Propofol, AziPm, etomidate, and R-mTFD-MPAB each inhibited [3H]AziPm photoincorporation into GABAAR subunits maximally by ∼50%. When the amino acids photolabeled by [3H]AziPm were identified by protein microsequencing, we found propofol-inhibitable photolabeling of amino acids in the β3-α1 subunit interface (β3Met-286 in β3M3 and α1Met-236 in α1M1), previously photolabeled by [3H]azietomidate, and α1Ile-239, located one helical turn below α1Met-236. There was also propofol-inhibitable [3H]AziPm photolabeling of β3Met-227 in βM1, the amino acid in the α1-β3 subunit interface photolabeled by R-[3H]mTFD-MPAB. The propofol-inhibitable [3H]AziPm photolabeling in the GABAAR β3 subunit in conjunction with the concentration dependence of inhibition of that photolabeling by etomidate or R-mTFD-MPAB also establish that each anesthetic binds to the homologous site at the β3-β3 subunit interface. These results establish that AziPm as well as propofol bind to the homologous intersubunit sites in the GABAAR transmembrane domain that binds etomidate or R-mTFD-MPAB with high affinity.  相似文献   

12.
A precise continuous photometric assay has been devised and utilized for mechanistic studies of chicken and rat liver microsomal epoxide hydrolase (EH). The assay is based on monitoring the hydration of p-nitrostyrene oxide (PNSO) at 310 nm. Rat liver EH hydrates S-(+)- and R-(?)-PNSO differentially, the Km and V values for the former being ca. four times those for the latter; in contrast, enantiomeric differences are negligible with chicken liver EH. With rat EH V increases slightly from pH 7 to 8 and then falls rapidly from pH 8 to 9.5; Km remains constant from pH 7 to 8 and then increases steadily from pH 8 to 9.5. In 86 mol% D2O the solvent isotope effect on V (H2OD2O) is 1.103 ± 0.015. Both rat and chicken EH show a 3% inverse isotope effect for the hydration of [7-2H]PNSO and a 4% normal isotope effect for the hydration of [8-2H2]PNSO. These observations are discussed in terms of the possible participation of acid as well as base catalysis in the enzymatic mechanism.  相似文献   

13.
14.
《Phytochemistry》1987,26(7):1927-1930
The isotope ratios (3H:14C) in arteannuin B and artemisinin biosynthesized in Artemisia annua from [4R-3H1,2-14C]-, [5-3H2,2-14C]- and [2-3H2,2-14C](3RS)- mevalonate have revealed that two specific 1,2-hydride shifts take place during the oxidation and lactonization of the germacrane skeleton to yield dihydrocostunolide. The gem-methyls of DMAPP retain their identity until the final steps of artemisinin biosynthesis. Arteannuin B is considered to be a late precursor of artemisinin and the following biosynthetic sequence is suggested: farnesylpyrophosphate → germacrane skeleton → dihydrocostunolide → cadinanolide → arteannuin B → artemisinin.  相似文献   

15.
6-N-[3-3H]Trimethyl-dl-lysine was synthesized from 6-N-acetyl-l-lysine by the following chemical scheme: 6-N-acetyl-l-lysine → 2-keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid oxime → 6-N-[3-3H]acetyl-dl-lysine → dl-[3-3H]lysine → 2-N-[3-3H]formyl-dl-lysine → 2-[3-3H]formyl-6-N-trimethyl-dl-lysine → 6-N-[3-3H]trimethyl-dl-lysine. Using a 70% ammonium sulfate fraction obtained from a high-speed rat kidney supernatant, the cosubstrate and cofactor requirements for 6-N-trimethyl-l-lysine hydroxylase activity as measured by tritium release from 6-N-[3-3H]trimethyl-dl-lysine were: α-ketoglutarate, ferrous ions, l-ascorbate, and oxygen, with added catalase showing a slight but distinct stimulatory effect. On incubation with the crude rat kidney preparation, the release of tritium from 6-N-[3-3H]trimethyl-dl-lysine was linear with both time of incubation and protein concentration. Hydroxylation of 6-N-trimethyl-l-lysine, as measured by tritium release from the labeled substrate, was examined in rat kidney, heart, liver, and skeletal muscle tissues, and found to be most active in the kidney.  相似文献   

16.
Fatty acid biosynthesis from Na[1-14C]acetate was characterized in plastids isolated from primary roots of 7-day-old germinating pea (Pisum sativum L.) seeds. Fatty acid synthesis was maximum at 82 nanomoles per hour per milligram protein in the presence of 200 micromolar acetate, 0.5 millimolar each of NADH, NADPH, and coenzyme A, 6 millimolar each of ATP and MgCl2, 1 millimolar each of MnCl2 and glycerol-3-phosphate, 15 millimolar KHCO3, 0.31 molar sucrose, and 0.1 molar Bis-Tris-propane, pH 8.0, incubated at 35°C. At the standard incubation temperature of 25°C, fatty acid synthesis was essentially linear for up to 6 hours with 80 to 120 micrograms per milliliter plastid protein. ATP and coenzyme A were absolute requirements, whereas divalent cations, potassium bicarbonate, and reduced nucleotides all variously improved activity two- to 10-fold. Mg2+ and NADH were the preferred cation and nucleotide, respectively. Glycerol-3-phosphate had little effect, whereas dithiothreitol and detergents generally inhibited the incorporation of [14C]acetate into fatty acids. On the average, the principal radioactive products of fatty acid biosynthesis were approximately 39% palmitic, 9% stearic, and 52% oleic acid. The proportions of these fatty acids synthesized depended on the experimental conditions.  相似文献   

17.
Stimulation of IgE receptors on rat basophilic leukemia cells causes a transient rise and fall of methylated phopholipids, Ca2+ influx, and release of arachidonic acid previously incorporated into phosphatidylcholine and liberation of histamine. Inhibition of phospholipid methylation by methyltransferase inhibitors, 3-deazaadenosine and homocysteine thiolactone, almost completely blocks the influx of Ca2+, and release of arachidonic acid and histamine. Stimulation of immunoglobulin E receptors by antigen releases only [14C]arachidonic acid but not [14C]linoleic acid, [14C]oleic acid and [14C]stearic acid, all of which were previously incorporated into phospholipids. [14C]Arachidonate was found to be incorporated mainly into phosphatidylcholine. The phosphatidycholine rich in arachidonate appeared to be synthesized to a considerable extent by the transmethylation pathway. These findings suggest that in rat basophilic leukemia cells, immunoglobulin E receptors, phospholipid methyltransferases, Ca2+ ion channel, and phospholipase(s) that cause release of arachidonic acid and the discharge of histamine are associated.  相似文献   

18.
Accurate measures of plasma FA oxidation can improve our understanding of diseases characterized by impaired FA oxidation. We describe and compare the 24 h time-courses of FA oxidation using bolus injections of [1-14C]palmitate versus [9,10-3H]palmitate under postabsorptive, postprandial, and walking conditions. Fifty-one men and 95 premenopausal women participated in one condition (postabsorptive, postprandial, or walking), one tracer (14C- or 3H-labeled), and an acetate or palmitate study. Groups were matched for sex, age, and body mass index (BMI). At 24 h, cumulative [3H]acetate recovery as 3H2O was 80 ± 6%, 78 ± 2%, and 81 ± 6% in the postabsorptive, postprandial, and walking conditions, respectively (not significant). Model-predicted maximum [1-14C]acetate recovery as expired 14CO2 was 59 ± 12%, 52 ± 8%, and 65 ± 10% in the postabsorptive, postprandial, and walking condition, respectively (one way ANOVA, P = 0.12). When corrected with the corresponding acetate recovery factors, 24 h time-courses of FFA oxidation were similar between [1-14C]palmitate and [9,10-3H]palmitate in all three conditions. In contrast to previous meal ingestion studies, an acetate-hydrogen recovery factor was needed to achieve comparable oxidation rates using an intravenous bolus of [3H]palmitate. In conclusion, intravenous boluses of [9,10-3H]palmitate versus [1-14C]palmitate gave similar estimates of 24 h cumulative FFA oxidation in age-, sex- and BMI-matched individuals.  相似文献   

19.
Hydrogen sulfide (H2S), can produce pharmacological effects on neural and non-neural tissues from several mammalian species. The present study investigates the pharmacological action of H2S, (using sodium hydrosulfide, NaHS, and/or sodium sulfide, Na2S as donors) on amino acid neurotransmission (using [3H] d-aspartate as a marker for glutamate) from isolated, superfused bovine and porcine retinae. Isolated neural retinae were incubated in Krebs solution containing [3H] d-aspartate at 37°C. Release of [3H] d-aspartate was elicited by high potassium (K+ 50 mM) pulse. Both NaHS and Na2S donors caused an inhibition of K+-evoked [3H] d-aspartate release from isolated bovine retinae without affecting basal [3H] d-aspartate efflux yielding IC50 values of 0.006 and 6 μm, respectively. Furthermore, NaHS inhibited depolarization-evoked release of [3H] d-aspartate from isolated porcine retinae with an IC50 value of 8 μM. The inhibitory action of NaHS on [3H] d-aspartate release from porcine retinae was blocked by propargyglycine, a selective inhibitor of cystathionine γ-lyase (CSE). Our results indicate that H2S donors can inhibit amino acid neurotransmission from both isolated bovine and porcine retinae, an effect that is dependent, at least in part, on intramural biosynthesis of H2S.  相似文献   

20.
9,10-Difluoropalmitic acid (DFPA) labeled with the cyclotron produced, positron emitting radionuclide 18F has been synthesized as a potential analogue of 9,10-[3H]palmitic acid, a fatty acid which has been used to study lipid metabolism in rat brain and pituitary. [18F]DFPA was prepared by the direct and stereoselective addition of [18F]F2 to the double bond of cis-9,10-palmitoleic acid. The fluorination was carried out in FCCl3 at −70 °C using a low concentration of F2 (0.5%) in neon. [18F]DFPA has been obtained in radiochemical yields of 12–16% from end-of-bombardment (EOB) in approx. 2.5 h. Chemical and radiochemical purity exceeded 95%, and specific activities calculated to EOB ranged from 500 to 1000 mCi/mmol. [18F]DFPA crosses the blood-brain barrier and is incorporated into rat brain at about twice the level of that of 9,10-[3H]palmitic acid. The synthesis of [18F]DFPA permits us to study the biological disposition and metabolism of a vicinal-difluoro fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号