首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The repression-derepression control of Nostoc muscorum nitrate reductase was studied with regard to the Mo-cofactor and apoprotein levels. It was found that the synthesis of Mo-cofactor is constitutive but the apoprotein is subject to the repression-derepression control. In NH4+ medium apoprotein synthesis was repressed and in N2 and NO3? media apoprotein synthesis was derepressed. The apoprotein levels were similar in NO3? and N2 media; however, the nitrate reductase activity was lower in N2 medium due to lower Mo-cofactor activity. The lower Mo-cofactor activity in N2-fixing conditions as compared to that in non-N2-fixing conditions was consistent with the earlier view that the Mo-cofactor of nitrate reductase may be a precursor for FeMo-cofactor of nitrogenase.  相似文献   

2.
This in silico and in vitro comparative study was designed to evaluate the effectiveness of some biurets (K1 to K8) and glucantime against Leishmania major and Leishmania infantum promastigotes. Overall, eight experimental ligands and glucantime were docked using AutoDock 4.3 program into the active sites of Leishmania major and Leishmania infantum pteridine reductase 1, which were modeled using homology modeling programs. The colorimetric MTT assay was used to find L. major and L. infantum promastigotes viability at different concentrations of biuret derivatives in a concentration and time-dependent manner and the obtained results were expressed as 50% and 90% of inhibitory concentration (IC50 and IC90). In silico method showed that out of eight experimental ligands, four compounds were more active on pteridine reductase 1. K3 was the most active against L. major promastigotes with an IC50 of 6.8 μM and an IC90 of 40.2 μM, whereas for L. infantum promastigotes was K8 with IC50 of 7.8 μM. The phenylethyl derivative (K7) showed less toxicity (IC50s > 60 μM) in both Leishmania strains. Glucantime displayed less growth inhibition in concentration of about 20 μM. In silico and especially docking results in a recent study were in accordance with the in vitro activity of these compounds in presented study and compound K3, K2 and K8 showed reasonable levels of selectivity for the Leishmania pteridine reductase 1.  相似文献   

3.
Dominik Mojzita 《FEBS letters》2010,584(16):3540-3544
l-Xylulose reductase is part of the eukaryotic pathway for l-arabinose catabolism. A previously identified l-xylulose reductase in Hypocrea jecorina turned out to be not the ‘true’ one since it was not upregulated during growth on l-arabinose and the deletion strain showed no reduced l-xylulose reductase activity but instead lost the d-mannitol dehydrogenase activity [17]. In this communication we identified the ‘true’ l-xylulose reductase in Aspergillus niger. The gene, lxrA (JGI177736), is upregulated on l-arabinose and the deletion results in a strain lacking the NADPH-specific l-xylulose reductase activity and having reduced growth on l-arabinose. The purified enzyme had a Km for l-xylulose of 25 mM and a νmax of 650 U/mg.  相似文献   

4.
Nitrate reductase from Amaranthus viridis is similar to nitrate reductase from other plant sources. NH2OH inhibits nitrate reduction from NADH by the nitrate reductase complex, but it does not inhibit either the NADH-dehydrogenase activity or nitrate reduction from reduced flavin mononucleotides. The inhibition observed was non-competitive with nitrate when the enzyme was pre-incubated with NH2OH and NADH, and competitive with nitrate without pre-incubation. The Ki values for NH2OH were 5 μM and 30 μM with or without pre-incubation respectively.  相似文献   

5.
The appearance of nitrate reductase activity in derepressed cultures of the Nit A mutant of Chlamydomonas reinhardtii required concomitant photosynthetic CO2 fixation and was inhibited when protein turnover was prevented. Provided leupeptin was included in the extraction buffer, a single species of nitrate reductase (molecular mass, m = 390 kDa) was extracted from Nit A cultures incubated in nitrate medium for 4 h. Cultures of the mutant incubated in nitrate-free medium contained a number of nitrate reductase species (m = 52–500 kDa). This evidence suggests that nitrate plays a role in the stabilisation of the structure of the mutant nitrate reductase. Only one species of nitrate reductase (m = 188 kDa) was extracted from wild type cultures grown with nitrate.  相似文献   

6.
The effect of nitrate and cytokinin on the induction of nitrate reductase (NADH-nitrate oxidoreductase, EC 1.6.6.1) in embryos of Agrostemma githago was compared. Increased enzyme levels in response to treatment with the cytokinin benzyladenine were not correlated with a general stimulation of protein synthesis or a general reduction of protein breakdown. Actinomycin D did not inhibit the formation of nitrate reductase in response to nitrate or the cytokinin. Cycloheximide and puromycin inhibited the induction by the hormone to the same extent as, or even more than, the incorporation of [14C]leucine into protein. Induction of nitrate reductase by nitrate was much less susceptible to inhibition by cycloheximide and puromycin than induction of the enzyme by benzyladenine. When induction of nitrate reductase was carried out in the presence of 2H2O, isopycnic equilibrium centrifugation in CsCl showed that incorporation of 2H into the enzyme had occured. The increase in the buoyant density of nitrate reductase was the same whether the enzyme was induced by nitrate or by benzyladenine, indicating that at least part of the nitrate reductase molecule was newly synthesized in both instances.  相似文献   

7.
Mutant strains in the tsaA gene encoding alkyl hydroperoxide reductase were more sensitive to O2 and to oxidizing agents (paraquat, cumene hydroperoxide and t-butylhydroperoxide) than the wild type, but were markedly more resistant to hydrogen peroxide. The mutant strains resistance phenotype could be attributed to a 4-fold and 3-fold increase in the catalase protein amount and activity, respectively compared to the parent strain. The wild type did not show an increase in catalase expression in response to sequential increases in O2 exposure or to oxidative stress reagents, so an adaptive compensatory mutation has probably occurred in the mutants. In support of this, chromosomal complementation of tsaA mutants restored alkyl hydroperoxide reductase, but catalase was still up-expressed in all complemented strains. The katA promoter sequence was the same in all mutant strains and the wild type. Like its Helicobacter pylori counterpart strain, a H. hepaticus tsaA mutant contained more lipid hydroperoxides than the wild type strain. Hepatic tissue from mice inoculated with a tsaA mutant had lesions similar to those inoculated with the wild type, and included coagulative necrosis of hepatocytes. The liver and cecum colonizing abilities of the wild type and tsaA mutant were comparable. Up-expression of catalase in the tsaA mutants likely permits the bacterium to compensate (in colonization and virulence attributes) for the loss of an otherwise important oxidative stress-combating enzyme, alkyl hydroperoxide reductase. The use of erythromycin resistance insertion as a facile way to screen for gene-targeted mutants, and the chromosomal complementation of those mutants are new genetic procedures for studying H. hepaticus.  相似文献   

8.
Labelling with ferritin-conjugated antibody shows that Pseudomonas cytochrome cd1 is associated with the inner surface of the cytoplasmic membrane. Cytochrome cd1 is, however, enriched to the soluble fraction obtained after destruction of Pseudomonas spheroplasts. Comparison of the respiratory nitrite reductase activities, due to this cytochrome, between different cellular fractions and the purified enzyme shows that while the kinetic pattern and the temperature dependence of the activity remain almost the same the molecular activity is enhanced when the enzyme is released from cells.A new assay of respiratory nitrite reductase was developed in this study. The method is based on determination of the stoichiometrical proton consumption accompanying nitrite reduction.  相似文献   

9.
G. Unden  A. Kröger 《BBA》1983,725(2):325-331
Incorporation of the electron-transport enzymes of Vibrio succinogenes into liposomes was used to investigate the question of whether, in this organism, a cytochrome b is involved in electron transport from formate to fumarate on the formate side of menaquinone. (1) Formate dehydrogenase lacking cytochrome b was prepared by splitting the cytochrome from the formate dehydrogenase complex. The enzyme consisted of two different subunits (Mr 110 000 and 20 000), catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone by formate, and could be incorporated into liposomes. (2) The modified enzyme did not restore electron transport from formate to fumarate when incorporated into liposomes together with vitamin K-1 (instead of menaquinone) and fumarate reductase complex. In contrast, restoration was observed in liposomes that contained formate dehydrogenase with cytochrome b (Em = ?224 mV), in addition to the subunits mentioned above (formate dehydrogenase complex). (3) In the liposomes containing formate dehydrogenase complex and fumarate reductase complex, the response of the cytochrome b of the formate dehydrogenase complex was consistent with its interaction on the formate side of menaquinone in a linear sequence of the components. The low-potential cytochrome b associated with fumarate reductase complex was not reducible by formate under any condition. It is concluded that the low-potential cytochrome b of the formate dehydrogenase complex is an essential component in the electron transport from formate to menaquinone. The low-potential cytochrome b of the fumarate reductase complex could not replace the former cytochrome in restoring electron-transport activity.  相似文献   

10.
We report some properties of Protein PA which has been isolated from the soluble fraction of a chlB mutant after anaerobic growth in the presence of KNO3. This protein has been identified by its capacity to reactivate nitrate reductase present in the soluble fraction of a chlA mutant by the complementation process. The presence of active Protein PA in the chlB mutant is independent of the presence of oxygen or of nitrate during growth. In contrast, the addition of sodium tungstate to the growth medium leads to the formation of inactive Protein PA which is not able to activate nitrate reductase in the chlA-soluble extract by complementation. Inactive Protein PA has been quantitated immunologically. The partial purification of Protein PA has been achieved from various chlorate-resistant mutants (chlA?chlG). The establishment of particular complementation systems comprising the soluble extracts of chlA or chlB mutants and partially purified Protein PA from soluble fractions of different chlorate-resistant mutants, has allowed the quantitative estimation of this protein. The analysis by ‘rocket immunoelectrophoresis’ using an antiserum specific for Protein PA has shown that inactive Protein PA is present in approximately equivalent amounts in the chlA, chlE, chlG and chlD mutants  相似文献   

11.
The de novo synthesis of PAL is demonstrated to occur sometime between imbibition and the end of a 4-hr white light treatment. H2OD2O transfer experiments indicate that PAL synthesis may occur during the light period whilst D2O-H2O transfer experiments indicate that synthesis of inactive PAL may occur during dark growth followed by activation by light. Neither of these observations is conclusive. De novo synthesis of PAL occurs in excised hypocotyls of gherkin and tuber discs of potato either in darkness or in light. It is concluded that there is as yet no evidence which definitively shows that light controls PAL levels by regulating the rate of de novo synthesis.  相似文献   

12.
Membrane-integrated nitric oxide reductase (NOR) reduces nitric oxide (NO) to nitrous oxide (N2O) with protons and electrons. This process is essential for the elimination of the cytotoxic NO that is produced from nitrite (NO2?) during microbial denitrification. A structure-guided mutagenesis of NOR is required to elucidate the mechanism for NOR-catalyzed NO reduction. We have already solved the crystal structure of cytochrome c-dependent NOR (cNOR) from Pseudomonas aeruginosa. In this study, we then constructed its expression system using cNOR-gene deficient and wild-type strains for further functional study. Characterizing the variants of the five conserved Glu residues located around the heme/non-heme iron active center allowed us to establish how the anaerobic growth rate of cNOR-deficient strains expressing cNOR variants correlates with the in vitro enzymatic activity of the variants. Since bacterial strains require active cNOR to eliminate cytotoxic NO and to survive under denitrification conditions, the anaerobic growth rate of a strain with a cNOR variant is a good indicator of NO decomposition capability of the variants and a marker for the screening of functionally important residues without protein purification. Using this in vivo screening system, we examined the residues lining the putative proton transfer pathways for NO reduction in cNOR, and found that the catalytic protons are likely transferred through the Glu57 located at the periplasmic protein surface. The homologous cNOR expression system developed here is an invaluable tool for facile identification of crucial residues in vivo, and for further in vitro functional and structural studies.  相似文献   

13.
巨桉是我国退耕还林过程中采用的重要速生树种之一,被广泛用于人工造林。采用盆栽试验,研究了巨桉根系分解初期对菊苣幼苗生长和光合生理特性的影响。试验设置A1(50 g/盆)、A2(100 g/盆)和对照(CK)3个根系水平,将各处理的根系分别与10 kg土壤混合后装盆,播种菊苣。待A2处理植株的第3片真叶完全展开后测定菊苣光合生理指标及相关生长指标。结果表明:在巨桉根系分解初期,明显抑制了菊苣高生长、根生长、生物量积累、叶面积扩展及光合色素的合成,且随着根系添加量的增加抑制作用加大;菊苣叶片胞间CO2浓度(Ci)增加,而净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著低于对照;随土壤中根系含量的增加,除CO2补偿点(CCP)呈增加趋势外,其他光响应和CO2响应的特征参数均呈明显的下降趋势,并与对照差异显著;各生长指标除与胞间CO2浓度呈现出负相关外,与其它光合特征参数、光合色素以及相应的响应曲线参数之间均呈现出显著或极显著的正相关关系;通过GC-MS检测表明,巨桉根系中含有2,6-二叔丁基对甲酚、N-甲基苯乙胺等多种具有化感潜力化学物质,在其分解过程中,这些化感物质逐步释放并作用于受体植物,抑制其光合色素合成和光合作用,降低其环境适应能力,从而抑制菊苣的生长。  相似文献   

14.
The activity and decay characteristics of nitrate reductase from wheat (Triticum aestivum) were studied in crude, partially-purified and highly-purified preparations. The decay of nitrate reductase activity in crude extracts was due to spontaneous dissociation of the enzyme and to the effects of two decay factors, one present in the 0–30% and the other in the 50–70% saturated (NH4)2SO4 fraction of a crude extract. Low rates of factor-mediated NR decay in vitro were associated with high levels of NR activity in vivo.  相似文献   

15.
The linkage between the enzyme system catalysing formate hydrogenlyase and reductases involved in anaerobic respiration in intact cells of anaerobically grown Proteus mirabilis was studied. Reduction of nitrate and fumarate by molecular hydrogen or formate was possible under all growth conditions; reduction of tetrathionate and thiosulphate occurred only in cells harvested at late growth phase from a pH-regulated batch culture and not in cells harvested at early growth phase or in cells grown in pH-auxostat culture. Under all conditions, cells possessed the enzyme tetrathionate reductase. We conclude that linkage between tetrathionate reductase (catalysing also reduction of thiosulphate) and the formate hydrogenlyase chain is dependent on growth conditions. During reduction of high-potential oxidants such as fumarate, tetrathionate (when possible) or the artificial electron acceptor methylene blue by formate, there was no simultaneous H2 evolution due to the formate hydrogenlyase reaction. H2 production started only after complete reduction of methylene blue or fumarate, in the case of methylene blue after a lag phase without gas production. In preparations with a low fumarate reduction activity this was accompanied by an acceleration in CO2 production. During reduction of thiosulphate (a low-potential oxidant) or of tetrathionate in the presence of benzyl viologen (a low-potential mediator) by formate, H2 was evolved simultaneously. From this we conclude that formate hydrogenlyase is regulated by a factor that responds to the redox state of any electron acceptor couple present such that lyase activity is blocked when the acceptor couple is oxidised to too great an extent.  相似文献   

16.
The activity of hydroxymethylglutaryl CoA reductase (NADPH) (EC 1.1.1.34) was studied in the latex of regularly tapped mature trees of Hevea brasiliensis. The reductase activity was found mainly (95% of the total activity) in the pellet fraction (40 000 g) of the centrifuged latex. The enzyme in this fraction had a specific requirement for NADPH as the cofactor and, while not obligatory for activity, was activated by dithiothreitol at the optimum concentration of 2 mM. The pH optimum was found to be 6.6–6.9 in 0.1 M phosphate buffer. Mevalonate and CoA (at 2 mM each) did not affect enzyme activity, while hydroxymethylglutarate (2 mM) was slightly inhibitory. p-Chloromercuribenzoate (1 mM) completely inhibited this enzyme. The reductase activity in the 40 000 g pellet was not easily solubilized either using Triton X-100 or by sonication. The apparent Km for the washed, membrane-bound enzyme (103 000 g pellet) was 56 μ M (RS-HMG-CoA). Magnesium-ATP (4 mM) inactivated the reductase but this effect was greatly diminished or was absent upon washing the 40 000 g pellet.  相似文献   

17.
8-Azaguanine (10−4 M) supplementation in synthetic medium inhibited flavinogenesis in Eremothecium ashbyii to far greater extent (68%) than the growth (25%). That enzymes comprising the biosynthetic pathway of riboflavin are synthesized during early growth phase of the organism is supported by the data presented. 8-Azaguanine mediated inhibition in flavinogenesis was closely related with decreased levels of ribose-5′-phosphatase, ribose reductase and ribitol kinase, the enzymes involved in supplying ribitol for flavinogenesis. Addition of guanine and not ribitol during early growth phase to 8-azaguanine-added cultures released the inhibition of riboflavin synthesis and restored the enzyme levels in the presence of the antimetabolite.  相似文献   

18.
D.L. Knook  J.Van&#x;t Riet  R.J. Planta 《BBA》1973,292(1):237-245
1. The participation of cytochromes in the membrane-bound, nitrate and oxygen respiratory systems of Klebsiella (Aerobacter) aerogenes has been investigated. The membrane preparations contained the NADH, succinate, lactate and formate oxidase systems, and in addition a high respiratory nitrate reductase activity.2. Difference spectra indicated the presence of cytochromes b, a1, d, and o. Cytochromes of the c-type could not be detected in these membranes. Both cytochrome b content and respiratory nitrate reductase activity were the highest in bacteria grown anaerobically in the presence of nitrate.3. Cytochrome b was the only cytochrome which, after being reduced by NADH, could be partially reoxidized anaerobically in the presence of nitrate. Furthermore, nitrate caused a lower aerobic steady state reduction only of cytochrome b.4. NADH oxidase and NADH-linked respiratory nitrate reductase activities were both inhibited by antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide and KCN. NADH oxidase activity was selectively inhibited by CO, while azide was found to inhibit only the respiratory nitrate reductase. In the presence of azide, nitrate did not affect the level of reduction of cytochrome b.5. The evidence presented suggests that cytochrome b is a carrier in the electron transport systems to both nitrate and oxygen; from cytochrome b branching occurs, with one branch linked to the respiratory nitrate reductase and one branch linked to oxidase systems, containing the cytochromes a1, d and o.  相似文献   

19.
The Hypocrea jecorina LXR1 was described as the first fungal l-xylulose reductase responsible for NADPH dependent reduction of l-xylulose to xylitol in l-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal d-mannitol 2-dehydrogenases. Lxr1 and the orthologous Aspergillus nigermtdA are not induced by l-arabinose but expressed at low levels during growth on different carbon sources. Deletion of lxr1 does not affect growth on l-arabinose and l-xylulose reductase activity remains unaltered whereas d-mannitol 2-dehydrogenase activities are reduced. We conclude that LXR1 is a d-mannitol 2-dehydrogenase and that a true LXR1 is still awaiting discovery.  相似文献   

20.
Two classes of active-site specific inhibitors of trypsin-like proteases have been shown to inhibit reversibly the multiplication of eukaryotic cells in vitro. The competitive inhibitors p-aminobenzamidine and benzamidine were found to arrest the growth of normal and transformed mouse fibroblasts and human KB cells. The inhibition of cell multiplication occurred within 24 h and was accompanied by substantial decreases in the rates of DNA and protein synthesis. The rate of RNA synthesis was relatively unaffected by the protease inhibitors. In agreement with the known inhibition constants (Ki) for their action against trypsin, p-aminobenzamidine was a much more effective inhibitor of cell multiplication than benzamidine. In addition, tosyllysine chloromethyl ketone (Tos-LysCH2Cl), an active-site titrant and irreversible inhibitor of trypsin, was found to cause a reversible inhibition of growth. These results suggest that an essential protease activity is necessary for cell multiplication. However, in the case of mouse L-cells, all of the inhibitors and particulary p-aminobenzamidine caused excessive accumulation of lactate in the extracellular medium. This observation, which suggests the possibility of additional sites of action of these compounds in cells, was found to depend upon the cell type and appears to be unrelated to the inhibition of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号