首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membranes from erythrocytes or MAT-A 13762 tumor cells were labeled with the fatty acid spin probe I(5,10) or ANS and examined by spin resonance (ESR) or fluorescence polarization in the presence or absence of the perturbants EDTA, trypsin, glutaraldehyde, and dodecylsulfate. Extraction of cell membranes with hypotonic EDTA produced fragments in which the order parameters and fluorescence polarization values increased. Fluorescence polarization values using membranes labeled with diphenylhexatriene showed an apparent increase in membrane fluidity. A large portion of both I(5,10) and both fluorescence probes coextract with the peripheral membrane proteins in both membrane systems. Paramagnetic quenching of tryptophan fluorescence with I(5,10) and the spectral characteristics of ANS in these membranes indicated further that significant amounts of both probes bind either at or near the protein-lipid interface or directly to protein moieties. Trypsinization of cell membranes, which preferentially cleaves the large cytoskeletal proteins, fragmented the membranes and reduced the ESR order parameter. Glutaraldehyde immobilized I(5,10) in both types of membranes. These studies suggest that the association of cytoskeletal proteins with the membrane does not have any pronounced, consistent effect on biophysical properties of the bilayer.

Attempts to apply these same probes to studies of the plasma membranes of intact cells were not successful because of the diffusion of the probes into the cells. These studies also point out some difficulties in using probe-group techniques to determine the nature of changes in bilayer structural parameters and emphasize the need for a better understanding of probe-group localization and behavior in such studies.  相似文献   

2.
M G Taylor  I C Smith 《Biochemistry》1981,20(18):5252-5255
The reliability for the study of membrane properties of the steroid nitroxide spin probe, 3-doxylcholestane, was tested by comparison of analogous data for the deuterated steroid, cholesterol-3 alpha-d. Good agreement between the two probes was found for the dependence of their order parameters on variation of temperature or cholesterol concentration in egg phosphatidylcholine bilayers. This finding is contrasted with the results of a previous study of fatty acid probes where poor agreement was found for the spectral responses of nitroxide- and deuterium-labeled species. The angular dependence of the ESR spectra of nitroxide-labeled probes in oriented multibilayer films was examined to determine if the probes were oriented in a tilted fashion in the bilayer. The 3-doxylcholestane probe and a doxylstearic acid labeled at position 14 orient with their long molecular axes perpendicular to the bilayer plane. In contrast, the stearic acid probe nitroxide labeled at position 5 does not appear to orient in such a fashion. We suggest that the behavior of the latter probe reflects the difficulty of inserting a bulky nitroxide group into a highly ordered region of the bilayer rather than an inherent tilting of the phospholipid acyl chains. On the basis of the comparisons between various types of probes, some suggestions are made concerning the choice of ESR spin probe to obtain reliable information in membrane studies.  相似文献   

3.
The conformational transition of the polypeptide chain elongation factor G (EF-G) induced by interaction with guanine nucleotide has been investigated by means of the spin-labeling technique. Various spin-label probes were attached specifically to the sulfhydryl group of the protein that is essential for binding to ribosomes, and the effects of these ligands on the electron spin resonance (ESR) spectra were examined. It was found that the ESR spectra of EF-G labeled with nitroxide maleimide reagents were modified by the addition of various guanine nucleotides such as GDP, GTP and, to a lesser extent, by Gpp(NH)p and Gpp(CH2)p, indicating that conformational changes accompany the binding of nucleotide ligand. However, the ESR spectra of labeled EF-G-GDP and EF-G-GTP were almost identical. On the other hand, when EF-G was labeled with nitroxide iodoacetamide reagents, a clear difference in the ESR spectra of EF-G-GDP and EF-G-GTP derivatives was observed. In this case, the spectral shape of the spin-labeled EF-G in the presence of GTP or its analogs, Gpp(NH)p or Gpp(CH2)p, was quite similar to that of free, unliganded EF-G derivative. These results, together with those previously obtained using hydrophobic probes (Arai, Arai, & Kaziro (1975) J. Biochem. 78, 243-246) demonstrate the existence of an EF-G-guanine nucleotide binary complex. They also indicate that there is a substantial difference in conformation between free EF-G, EF-G-GDP, and EF-G-GTP near the active site essential for interaction with ribosomes.  相似文献   

4.
Binding of high density lipoprotein (HDL) to its receptor on cultured fibroblasts and aortic endothelial cells was previously shown to facilitate sterol efflux by initiation of translocation of intracellular sterol to the plasma membrane. After cholesterol-loaded human monocyte-derived macrophages were incubated with either [3H]mevalonolactone or lipoprotein-associated [3H]cholesteryl ester to radiolabel intracellular pools of sterol, incubation with HDL3 led to stimulation of 3H-labeled sterol translocation from intracellular sites to the cell surface which preceeded maximum 3H-labeled sterol efflux. A similar pattern was demonstrated for macrophages that were preloaded with cholesterol derived from either low density lipoprotein (LDL), acetyl-LDL, or phospholipase C-modified LDL. However, in macrophages that were not loaded with cholesterol, HDL3 stimulated net movement of 3H-labeled sterol from the plasma membrane into intracellular compartments, the opposite direction from that seen for cholesterol-loaded cells. A similar influx pattern was found in nonloaded macrophages and fibroblasts that were labeled with trace amounts of exogenous [3H]cholesterol. Cholesterol translocation from intracellular pools to the cell surface of cholesterol-loaded macrophages appeared to be stimulated by receptor binding of HDL, since chemical modification of HDL with tetranitromethane (TNM), which abolishes its receptor binding, reduced its ability to stimulate 3H-labeled sterol translocation and efflux. In nonloaded cells, however, the ability of HDL3 to stimulate sterol efflux and movement of sterol from the plasma membrane into intracellular pools was unaffected by TNM modification. Thus, binding of HDL to its receptor on cholesterol-loaded macrophages appears to promote translocation of intracellular cholesterol to the plasma membrane followed by cholesterol efflux into the medium. However, in nonloaded macrophages, HDL stimulates sterol movement from the plasma membrane into intracellular pools by a receptor-independent process.  相似文献   

5.
ESR spectra of membrane spin probes are conventionally used to obtain structural information. Here we show, for the first time, that when a membrane-soluble compound undergoes a chemical reaction, time-dependent changes in the ESR spectra of membrane spin probes can yield information about the kinetics of reaction. A benzoic acid ester, analog of the local anesthetic tetracaine, partitions between aqueous and membrane phases, causing changes in membrane structure as monitored by the ESR spectra of a probe. At alkaline pH, the lineshapes are time-dependent and the spectra go back to that in the absence of drug. The changes follow pseudo-first order kinetics. This effect is due to drug hydrolysis leading to water-soluble products, as confirmed by direct spectrophotometric measurements of the reaction. The pseudo-first order rate constants found by the latter method are in very good agreement with those calculated by ESR. The rate of hydrolysis decreases with increasing membrane concentration. This phenomenon accounts in part for the increased potency and toxicity of the more membrane-soluble local anesthetics.  相似文献   

6.
Genistein (5,7,4′-trihydroxyisoflavone) the common soy beans isoflavone has attracted scientific interest due to its antioxidant, estrogenic, antiangiogenic and aniticancer activities. The aim of the present study was to investigate the interaction of genistein with biological (erythrocyte) and model membranes (dimyristoyl- and dipalmitoylphosphatidylcholine). Using Laurdan and Prodan as fluorescent probes, we demonstrated phase behavior and membrane fluidity changes induced by genistein. ESR spectroscopy revealed alterations caused by genistein in membrane domains structure and mobility of spin probes with free radicals located at different depths of membrane. The method of ESR spectra decomposition and computer simulation of the recorded spectra were used in order to visualize domain coexistence by GHOST condensation method. Fluorescence and ESR spectroscopy experiments performed at different temperatures enabled us to observe the effect of isoflavone on phospholipid bilayers in either gel or liquid crystalline phase. It was concluded that genistein preferentially intercalated into lipid headgroup region, to some extent into polar–apolar interface and only in minimal degree into hydrophobic core of the membrane. According to our best knowledge this is the first study on modification of domain structure of membranes by genistein.  相似文献   

7.
1. In a previous ESR study of a membrane acetylcholinesterase (EC 3.1.1.7) we found, contrary to observations by other authors, spectra indicating that the active serine might be located in a pocket of the enzyme surface. In order to inquire into this possibility, ESR spectra were studied under the influence of different physico-chemical factors known to cause an unfolding of proteins. 2. The active serine of the postsynaptic membrane acetylcholinesterase of Torpedo marmorata electric organ was spin labeled using 1-oxyl-2, 2, 6, 6-tetramethyl-4-piperidinyletoxyphosphonofluoridate. 3. The effect of the chosen physico-chemical factors was an increase in the rotational freedom of spin labels; this result corroborates the suggestion that the active center of our acetylcholinesterase preparation is located in a pocket.  相似文献   

8.
The effect of enzymatic lipid peroxidation on the molecular order of microsomal membranes was evaluated by ESR spectroscopy using the spin probes 5-, 12-, and 16-doxyl-stearic acid. Rat liver microsomal membranes were peroxidized by the NADPH-dependent reaction in the presence of the chelate ADP-Fe3+. Peroxidation resulted in a preferential depletion of polyenoic fatty acids and an increase in the percentage composition of shorter fatty acyl chains. There was no change in the cholesterol/phospholipid ratio of the peroxidized microsomes. The molecular order of both control and peroxidized membranes decreased toward the central region of the bilayer, and the order parameter (S) of each probe was temperature dependent. Peroxidation of the microsomal membrane lipids resulted in an increase in the order parameter determined with the three stearic acid spin probes. Of the three probes, 12-doxylstearic acid was the most sensitive to the changes in membrane organization caused by peroxidation. These data indicate that ESR spectroscopy is a sensitive method of detecting changes in membrane order accompanying peroxidation of membrane lipids.  相似文献   

9.
R D Pates  D Marsh 《Biochemistry》1987,26(1):29-39
Lipid-protein interactions in bovine rod outer segment disk membranes have been studied by using a series of eight stearic acid spin-label probes which were labeled at different carbon atom positions in the chain. In randomly oriented membrane dispersions, the electron spin resonance (ESR) spectra of the C-8, C-9, C-10, C-11, C-12, C-13, and C-14 atom positional isomers all apparently consist of two components. One of the components corresponds closely to the spectra obtained from dispersions of the extracted membrane lipids, and the other, which is characterized by a considerably greater degree of motional restriction of the lipid chains, is induced by the presence of the protein. Digital subtraction has been used to separate the two components. The proportion of the motionally restricted lipid component is approximately constant, independent of the position of the spin-label group, and corresponds to 30-40% of the total spin-label spectral intensity. The hyperfine splitting of the outer maxima in the difference spectra of the motionally restricted component decreases, and concomitantly, the line widths increase with increasing temperature but change relatively little with increasing distance of the spin-label group from the polar head-group region. This indicates that the corresponding chain motions of the protein-interacting lipids lie in the slow-motion regime of spin-label ESR spectroscopy (tau R approximately 10(-8) S) and that the mobility of these lipids increases with increasing temperature but does not vary greatly along the length of the chain. The data from the hyperfine splittings also suggest the existence of a polarity gradient immediately adjacent to the protein surface, as observed in the fluid lipid regions of the membrane. The more fluid lipid component is only slightly perturbed relative to the lipids alone (for label positions 5-14, inclusive), indicating the presence of chain motions on the nanosecond time scale, and the spectra also reveal a similar polarity profile in both lipid and membrane environments. ESR spectra have also been obtained as a function of magnetic field orientation with oriented membrane samples. For the C-14 atom positional isomer, the motionally restricted component is observed to have a large hyperfine splitting, with the magnetic field oriented both parallel and perpendicular to the membrane normal. This indicates that the motionally restricted lipid chains have a broad distribution of orientations at this label position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The influence of the beta-adrenoceptor blocking drugs atenolol, doberol, propranolol and exaprolol on synaptosomal membranes was studied using ESR spectroscopy of stearic acid spin labeled at the 16th position. The drugs changed the ESR spectra of the label in the membranes, where in addition to changes of a fluid lipid component they increased the proportion of a motionally-restricted component. No motionally-restricted component was found in the samples prepared from brain total lipid liposomes treated with the drugs. The drug propensities at 20 mmol/l concentration to increase the proportion of the motionally-restricted component in the following order, control less than doberol approximately atenolol less than or equal to propranolol less than exaprolol did not correlate with their potency to influence the dynamics of the bulk lipid membrane phase. The motionally-restricted component induced by exaprolol increased with raising temperature and prolongation of time of the sample incubation. The results indicate that the beta-adrenoceptor blocking drugs influence lipid-protein interaction in the synaptosomal membranes, which could be important for elucidation of their mechanism of biological membrane activities.  相似文献   

11.
These experiments measured the effect of gamma radiation on the nuclear envelope using doxyl-fatty acid spin-label probes. Nuclei were isolated from cultured MOLT-4 cells, a radiation-sensitive human T-cell lymphocyte. Membrane fluidity was measured from the electron paramagnetic resonance spectra of the probes. MOLT-4 cells were grown under standard conditions, and suspensions were exposed to 60Co gamma radiation at room temperature. The spectra of 5-doxylstearic acid in the nuclei were those of a strongly immobilized label. A difference in the membrane fluidity was detected in a series of experiments comparing labeled irradiated and nonirradiated nuclei. The change in fluidity was measured by comparing the changes in the order parameter, S, of the spin label in irradiated nuclei with those in control nuclei. The change in the S ratio is dependent on radiation dose, increasing with doses up to 15 Gy. The maximum change of the order parameter with time after irradiation occurs 16-20 h after radiation exposure. These observations are correlated with changes in cell viabilities.  相似文献   

12.
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called “portal region”, formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.  相似文献   

13.
Transport of the fluorescent cholesterol analog dehydroergosterol (DHE) from the plasma membrane was studied in J774 macrophages (Mphis) with normal and elevated cholesterol content. Cells were labeled with DHE bound to methyl-beta-cyclodextrin. In J774, Mphis with normal cholesterol, intracellular DHE became enriched in recycling endosomes, but was not highly concentrated in the trans-Golgi network or late endosomes and lysosomes. After raising cellular cholesterol by incubation with acetylated low-density lipoprotein (AcLDL), DHE was transported to lipid droplets, and less sterol was found in recycling endosomes. Transport of DHE to droplets was very rapid (t1/2 = 1.5 min after photobleaching) and did not require metabolic energy. In cholesterol-loaded J774 Mphis, the initial fraction of DHE in the plasma membrane was reduced, and rapid DHE efflux from the plasma membrane to intracellular organelles was observed. This rapid sterol transport was not related to plasma membrane vesiculation, as DHE did not become enriched in endocytic vesicles formed after sphingomyelinase C treatment of cells. When cells were incubated with DHE ester incorporated into AcLDL, fluorescence of the sterol was first found in punctate endosomes. After a chase, this DHE colocalized with transferrin in a distribution similar to cells labeled with DHE delivered by methyl-beta-cyclodextrin. Our results indicate that elevation of sterol levels in Mphis enhances transport of sterol from the plasma membrane by a non-vesicular pathway.  相似文献   

14.
T F Taraschi  A Wu  E Rubin 《Biochemistry》1985,24(25):7096-7101
Ethanol, in vitro, is known to perturb the molecular order of the phospholipids in biological membranes, while chronic ethanol exposure, in vivo, leads to resistance to disordering. Such changes have usually been measured by electron spin resonance, utilizing fatty acid spin probes. The use of such probes is controversial, since their orientation in the membrane may not accurately represent that of individual phospholipids. We, therefore, compared ethanol-induced structural perturbations in the membranes of rat hepatic microsomes measured with the spin probe 12-doxylstearic acid (SA 12) with those assayed with various phospholipid spin probes. With SA 12, the addition of increasing amounts of ethanol (50-250 mM) in vitro caused a progressive decrease in the membrane molecular order, as measured by electron spin resonance (ESR). By contrast, microsomes obtained from rats chronically fed ethanol were resistant to the disordering effect of ethanol. Microsomes labeled with the phospholipid spin probes 1-palmitoyl-2-(12-doxylstearoyl)phosphatidylcholine, -phosphatidylethanolamine, or -phosphatidic acid also exhibited increased disordering with the addition of increasing amounts of ethanol. However, the effect noted with phospholipid spin probes was less than that observed with the fatty acid probe. Microsomes obtained from the livers of chronically intoxicated animals labeled with the phospholipid probes were also resistant to the disordering effects of ethanol in vitro. These results suggest that fatty acid spin probes are qualitatively valid for measuring membrane perturbations in biological membranes, ethanol affects all microsomal phospholipids, regardless of chemical dissimilarities (e.g., head-group structure), in a qualitatively similar fashion, and the fluidization of fatty acyl chains in microsomal membranes is comparable in different membrane phospholipids.  相似文献   

15.
《Free radical research》2013,47(9):1036-1043
Abstract

Electron spin resonance (ESR) oximetry technique was applied for analysis of catalase activity in the present study. Catalase activity was evaluated by measuring oxygen from the reaction between hydrogen peroxide (H2O2) and catalase-positive cells. It was demonstrated that the ESR spectra of spin-label probes, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO) and 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (4-maleimido-TEMPO) in the presence of H2O2 were broadened with the concentrations of catalase. It was possible to make a calibration curve for catalase activity by peak widths of the spectra of each spin-label probe, which are broadened dependently on catalase concentrations. The broadened ESR spectra were also observed when the catalase-positive micro-organisms or the mammalian cells originally from circulating monocytes/macrophages were mixed with TEMPOL and H2O2. Meanwhile, catalase-negative micro-organisms caused no broadening change of ESR spectra. The present study indicates that it is possible to evaluate directly the catalase activity of various micro-organisms and mammalian cells by using an ESR oximetry technique.  相似文献   

16.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bisphosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P less than 0.002 and P less than 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding site is observed (P less than 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P less than 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network.  相似文献   

17.
Using microfluidic assays at a 100 s?1 wall shear rate, we examined the effects of ethanol on cholesterol-loaded neutrophils with respect to: (1) collision efficiency and membrane tethering to P-selectin-coated microbeads, (2) rolling on P-selectin-coated surfaces, and (3) primary and secondary interactions with neutrophils pre-adhered to intercellular adhesion molecule-1 (ICAM-1). Using methyl-β-cyclodextrin:cholesterol complexes, membrane cholesterol was increased over control by 4.6-fold (no ethanol), 3.6-fold (0.3% ethanol pre-loading), and 1.6-fold (0.3% ethanol post-loading). These treatments did not alter CD11b expression; however, PSGL-1 and L-selectin were lowered by cholesterol enrichment (±ethanol). Cholesterol enrichment enhanced microbead collision efficiency, which was abrogated by ethanol. Ethanol had no effect on elevation of tethering fraction by cholesterol enrichment. Incubation of cholesterol-loaded neutrophils with ethanol resulted in significantly longer membrane tethers, due to tether lifetime enhancement. On P-selectin-coated surfaces, cholesterol-enriched neutrophils exposed to ethanol rolled faster and with more variability than cholesterol-enriched neutrophils. Ethanol reduced homotypic collision efficiency of cholesterol-loaded neutrophils without effect on tethering fraction or secondary collision efficiency. Tether length during cholesterol-loaded neutrophil homotypic collisions was enhanced by ethanol, in part due to increased L-selectin/PSGL-1 bond tether lifetime. Overall, ethanol attenuated cholesterol-induced adhesion increases while increasing membrane fluidity as indicated by tether length.  相似文献   

18.
The aim of this work was to assess the relative contributions of lipid peroxidation and cholesterol content to the increase in membrane rigidity observed during senescence. Membrane fluidity was manipulated through exposure to peroxidized or cholesterol-loaded liposomes. Small unilamella liposomes were prepared and either peroxidized by Fe++-ADP-ascorbic acid or loaded with cholesterol. After incorporation of the liposomes into rat liver microsomal membranes, membrane fluidity was quantitated by measuring changes in polarization. Membranes exhibited a greater sensitivity to peroxidation than cholesterol in that incorporation of peroxidized liposomes induced microsomal membrane rigidity substantially more than did cholesterol-loaded liposomes. Thus it is proposed, based on data from the present and earlier studies, that membrane fluidity can be modulated readily by lipid peroxidation of membrane phospholipids, irrespective of the influences of cholesterol. These results support the proposal that alterations of lipid structure are more potent and effective than compositional changes in cholesterol in inducing age-related increases in membrane rigidity.  相似文献   

19.
A method has been developed to obtain well-defined NMR spectra of a structural lipoprotein of Escherichia coli in situ. When a histidine- and tryptophan-requiring strain was starved of both histidine and tryptophan, the lipoprotein was the only protein produced in the membrane. Using this condition, the lipoprotein, which has only one tyrosine residue (at the 56th position), was labeled with m-fluorotyrosine or 2-13C-tyrosine. The NMR spectra of the membrane fractions thus obtained have rather sharp peaks, indicating that the labeled side chains are relatively mobile, in agreement with the results of our ESR studies on the carboxyl-terminal region of the lipoprotein.  相似文献   

20.
Horvath G  Seidel GE 《Theriogenology》2006,66(4):1026-1033
A major site of cryoinjury during cryopreservation of mammalian oocytes is the plasma membrane. Chilling can irreversibly damage plasma membrane integrity during the lipid phase transition that occurs upon cooling. Membranes containing higher cholesterol concentrations are more fluid at lower temperatures and therefore less sensitive to cooling. The purpose of this study was to determine if cryosurvival of vitrified oocytes could be improved by incubation with cholesterol-loaded methyl-beta-cyclodextrin (CLC) prior to vitrification in the presence or absence of fetal calf serum (FCS), and if cholesterol could enter oocytes through cumulus cells and the zona pellucida. Cumulus-enclosed oocytes incubated with various concentrations (0, 0.75 or 1.5 mg/mL) of CLC in the presence of FCS for 25-45 min prior to vitrification did not result in different rates of development after warming of vitrified oocytes, followed by in vitro fertilization. However, there was an increase (P<0.05) in cleavage and number of eight-cell embryos from oocytes preincubated for 1h with 2mg/mL CLC in a chemically defined system and then handled and vitrified in chemically defined media, in comparison to those not exposed to CLC prior to vitrification or to those handled and vitrified in the presence of FCS (55, 41 and 38% eight-cell embryos, respectively). Fluorescence was seen in cumulus-oocyte complexes (COCs) previously exposed to CLC containing cholesterol labeled with a fluorescent dye; fluorescence was also seen in oocytes after removal of the cumulus cells. Oocytes not exposed to the labeled cholesterol did not fluoresce. Cholesterol from CLC readily entered cumulus cells and oocytes and improved survival in chemically defined vitrification systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号