首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ion transport through a gramicidin A like channel in the presence of solvent molecules with van der Waals parameters of water has been studied by means of the molecular dynamics simulation technique. It was found that the presence of solvent molecules in the channel has a tendency to equalize the effective masses of the ions through "association" thus giving the experimentally found ion selectivity to the gramicidin A channel.  相似文献   

2.
Molecular dynamics studies for the voltage-driven transport of the alkali metal ions lithium, sodium, and potassium through gramicidin A-type channels filled with water molecules are presented. The number of water molecules in the channel is obtained from a previous study (Skerra, A., and J. Brickmann, 1987, Biophys. J., 51:969-976). It is shown that the selectivity of the intrachannel ion diffusion through our model pore conforms to the experimentally observed selectivity of the gramicidin A channel. It is demonstrated that the number of water molecules in the channel plays a key role for the selectivity.  相似文献   

3.
The equilibrium binding constants of the Group I metal cations with gramicidin A in aqueous dispersions of lyso-PC have been determined using a combination of competitive binding with the T1+ ion and T1-205 NMR spectroscopy. The values of the binding constants at 34 degrees C are Li (32.2 M-1), Na (36.9 M-1), K (52.6 M-1), Rb (55.9 M-1), and Cs (54.0 M-1). The equilibrium binding constant for the T1+ ion at this temperature is 582 M-1. The relationships between the binding constants, the free energy of the binding process, and the cation selectivity of the gramicidin A channel are discussed.  相似文献   

4.
The permeability characteristics of gramicidin A channels are generally considered to reflect accurately the intrinsic properties of the channels themselves; i.e., the aqueous convergence regions are assumed to be negligible barriers for ion movement through the channels. The validity of this assumption has been examined by an analysis of gramicidin A single-channel current-voltage characteristics up to very high potentials (500 mV). At low permeant ion concentrations the currents approach a voltage-independent limiting value, whose magnitude is proportional to the permeant ion concentration. The magnitude of this current is decreased by experimental maneuvers that decrease the aqueous diffusion coefficient of the ions. It is concluded that the magnitude of this limiting current is determined by the diffusive ion movement through the aqueous convergence regions up to the channel entrance. It is further shown that the small-signal (ohmic) permeability properties also reflect the existence of the aqueous diffusion limitation. These results have considerable consequences for the construction of kinetic models for ion movement through gramicidin A channels. It is shown that the simple two-site-three-barrier model commonly used to interpret gramicidin A permeability data may lead to erroneous conclusions, as biionic potentials will be concentration dependent even when the channel is occupied by at most one ion. The aqueous diffusion limitation must be considered explicitly in the analysis of gramicidin A permeability characteristics. Some implications for understanding the properties of ion-conducting channels in biological membranes will be considered.  相似文献   

5.
Summary Recently, antibiotics have enjoyed widespread usage as tools in studies of epithelial transport. In the present study we assess the usefulness of the pore-forming antibiotic gramicidin D as a means for probing the electrical properties of the tight epithelium rabbit urinary bladder. Addition of 50 M gramicidin to the mucosal bath (either a NaCl or KCl Ringer's solution) led to a large irreversible increase in the transepithelial conductance (G T ) within 800 sec.G T increased by approximately 1200% and 500% in KCl and NaCl Ringer's solutions, respectively. Microelectrode measurements of the resistance ration (the ration of apical membrane resitance to basolateral membrane resistance) showed that apical membrane resistance is dereased by the drug. Measurements of the basolateral membrane resistance (R bl ) and tight junctional resistance (R j ) using a new and independent method (based on the perturbation of basolateral membrane electrogenic Na+ pump) demonstrated thatR bl andR j were unaffected, suggesting that the effects of gramicidin are restricted to the apical membrane for periods of at least 2 hours after drug addition. The selectivity of the gramicidin-induced permeability in the apical membrane was calculated from measurements of the apical membrane potential after ion substitutions using a modified version of the constant field equation. The selectivity sequence for cations was Cs+>K+>Na+>Li+>choline. Unlike the commonly used polyene antibiotics nystatin and amphotericin B, gramicidin did not induce a significant Cl permeability. In addition, the dose-response curve had a slope of 1. A method is described for calculating membrane resistances directly from transepithelial measurements under some conditions of gramicidin use, without requiring the use of microlectrode measurements.  相似文献   

6.
7.
B Turano  M Pear    D Busath 《Biophysical journal》1992,63(1):152-161
Empirical energy function calculations were used to evaluate the effects of minimization on the structure of a gramicidin A channel and to analyze the energies of interaction between three cations (guanidinium, acetamidinium, formamidinium) and the channel as a function of position along the channel axis. The energy minimized model of the gramicidin channel, which was based on the results of Venkatachalam and Urry (1983), has a constriction at the channel entrance. If the channel is not allowed to relax in the presence of the ions (rigid model), there is a large potential energy barrier for all three cations. The barrier varies with cation size and is due to high van der Waals and ion deformation energies. If the channel is minimized in the presence of the ions, the potential energy barrier to formamidinium entry is almost eliminated, but a residual barrier remains for guanidinium and acetamidinium. The residual barrier is primarily due, not to the expansion of the helix, but, to the disruption of hydrogen bonds between the terminal ethanoloamine and the next turn of the helix which occurs when the carbonyls of the outer turn of the helix librate inward toward the ion as it enters the channel. The residual potential energy barriers could be a possible explanation for the measured selectivity of gramicidin for formamidinium over guanidinium. The results of this full-atomic model address the applicability of the size-exclusion concept for the selectivity of the gramicidin channel.  相似文献   

8.
Studies for the cation permeability properties of the gramicidin A channel in erythrocyte membranes are presented. It is shown that gramicidin A interacts with the membrane in a cooperative manner, creating aggregates of the antibiotic molecules in the lipid lattice of the membrane. Cationic channels exist in these aggregates with the following order of selectivity: Rb+ greater than Cs+ greater K+ greater than Na+. The cation permeability of the channels depends on the media surrounding the membrane. This finding has been explained on the basis of Hodgkin-Keynes theory for single-file ion diffusion through extra-narrow pores.  相似文献   

9.
Raman scattering and infrared spectroscopic techniques were used to study the vibrational spectrum and conformation of the membrane channel protein gramicidin A in the solid state, in organic solutions and, using Raman scattering only, in a phospholipid environment. The investigation also includes measurements on head- and tail-group-modifled gramicidin A and a potassium thiocyanate-gramicidin A complex. Tentative identification of the molecular vibrations is proposed on the basis of the data on model compounds. The existence of four distinct conformations of the gramicidin A chain is established: conformation I present in the solid state, and CH3OH and CD3OD solutions; conformation II present in films cast from CHCl3 solution; conformation III present in (CH3)2SO and (CD3)2SO solutions at concentrations below 0.5 m gramicidin A; and conformation IV present in the potassium thiocyanate-gramicidin A complex. The data obtainable on a gramicidin A-phospholipid suspension indicate a gramicidin A conformation in this environment corresponding either to the conformation I or II. The details of the spectra in the amide I region are shown to be consistent with a β-parallel hydrogen-bonded πLD helix for conformational I, in terms of the polypeptide vibrational calculations of Nevskaya and co-workers. Conformation II is found to be consistent with an antiparallel double-stranded πLD helix, while conformations III and IV probably have π-helical structures with larger channel diameters. The data on head- and tail-modified gramicidin A molecules indicate that their conformations are only slightly different from that of gramicidin A in conformation I.  相似文献   

10.
Proton-enhanced carbon-13 magnetic resonance measurements have been made of the natural abundance carbon-13 carbons in hydrated Lα phase dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) codispersed with cholesterol or with the polypeptide gramicidin A′. The carbonyl group spectrum consists of a superposition of two peaks derived from the two carbonyl sites within the lipid. In the Lα phase of DMPC both carbonyl sites contribute axially symmetric spectra, one with a chemical shift anisotropy of –29 ppm and the other with a chemical shift anisotropy of less than –5 ppm. The chemical shift anisotropy of the broader carbonyl resonance was found to increase with increasing cholesterol content. However, in DMPC dispersions with gramicidin A′, the chemical shift anisotropy of the broader carbonyl signal initially increased slightly from that of pure DMPC and then decreased with increasing concentrations of gramicidin A′. The width of the narrower spectral component was essentially unaltered by cholesterol or gramicidin A′. The presence of a narrow component at all concentrations of cholesterol or gramicidin A′ suggests that it is unlikely that any significant conformational changes have occurred at the carbonyl level of the bilayer. We propose that the major effect of cholesterol or gramicidin A′ is to alter the molecular order parameter, Smol, which reflects the range of angles through which the local molecular long axis of the phospholipid is tumbling.  相似文献   

11.
The influence of the nonchannel conformation of the transmembrane protein gramicidin A on the permeability coefficients of neutral and ionized α-X-p-methyl-hippuric acid analogues (XMHA) (X = H, OCH3, CN, OH, COOH, and CONH2) across egg-lecithin membranes has been investigated in vesicle efflux experiments. Although 10 mol% gramicidin A increases lipid chain ordering, it enhances the transport of neutral XMHA analogues up to 8-fold, with more hydrophilic permeants exhibiting the greatest increase. Substituent contributions to the free energies of transfer of both neutral and anionic XMHA analogues from water into the bilayer barrier domain were calculated. Linear free-energy relationships were established between these values and those for solute partitioning from water into decadiene, chlorobutane, butyl ether, and octanol to assess barrier hydrophobicity. The barrier domain is similar for both neutral and ionized permeants and substantially more hydrophobic than octanol, thus establishing its location as being beyond the hydrated headgroup region and eliminating transient water pores as the transport pathway for these permeants, as the hydrated interface or water pores would be expected to be more hydrophilic than octanol. The addition of 10 mol% gramicidin A alters the barrier domain from a decadiene-like solvent to one possessing a greater hydrogen-bond accepting capacity. The permeability coefficients for ionized XMHAs increase with Na+ or K+ concentration, exhibiting saturability at high ion concentrations. This behavior can be quantitatively rationalized by Gouy-Chapman theory, though ion-pairing cannot be conclusively ruled out. The finding that transmembrane proteins alter barrier selectivity, favoring polar permeant transport, constitutes an important step toward understanding permeability in biomembranes. Received: 12 July 1999/Revised: 20 October 1999  相似文献   

12.
The modulation of gramicidin A single-channel characteristics by the amino acid side chains was investigated using gramicidin A analogues in which the NH2 terminal valine was chemically replaced by other amino acids. The replacements were chosen such that pairs of analogues would have essentially isosteric side chains of different polarities at position 1 (valine vs. trifluorovaline or hexafluorovaline; norvaline vs. S-methyl-cysteine; and norleucine vs. methionine). Even though the side chains are not in direct contact with the permeating ions, the single-channel conductances for Na+ and Cs+ are markedly affected by the changes in the physico-chemical characteristics of the side chains. The maximum single-channel conductance for Na+ is decreased by as much as 10-fold in channels formed by analogues with polar side chains at position 1 compared with their counterparts with nonpolar side chains, while the Na+ affinity is fairly insensitive to these changes. The relative conductance changes seen with Cs+ were less than those seen with Na+; the ion selectivity of the channels with polar side chains at position 1 was increased. Hybrid channels could form between compounds with a polar side chain at position 1 and either valine gramicidin A or their counterparts with a nonpolar side chain at position 1. The structure of channels formed by the modified gramicidins is thus essentially identical to the structure of channels formed by valine gramicidin A. The polarity of the side chain at position 1 is an important determinant of the permeability characteristics of the gramicidin A channel. We discuss the importance of having structural information when interpreting the functional consequences of site-directed amino acid modifications.  相似文献   

13.
On the basis of the calculated magnitude of the unidirectional flux through a gramicidin channel, it was predicted that a single conducting event should be sufficient to release trapped 22Na+ or 42K+ from phospholipid vesicles with a consequent apparent loss of K+Na+ ion selectivity. In support of this prediction, the introduction of gramicidin to the bathing solution of phospholipid vesicles containing trapped 22Na+ or 42K+ led to a release of vesicle contents which was consistent with the expectation that, for each gramicidin dimer present, the contents of approximately one vesicle are released. The predicted apparent loss of K+Na+ selectivity was also observed. Evidence was also presented suggesting some movement of gramicidin from vesicle to vesicle. The fluorescent intensity of gramicidin decreases with time when added to aqueous solutions at very low concentrations. It is proposed that this is a consequence of the extremely low solubility of gramicidin in water. On the basis of area per molecule calculations at the air-water interface, it was argued that the most likely conformation of gramicidin existing at the air-water interface, of those proposed in the literature, was that of ΠL,D6 helix.  相似文献   

14.
The importance of the tryptophan residues of gramicidin for the lipid structure modulating activity of this pentadecapeptide was investigated by studying the interaction of gramicidin analogs A, B, C (which have a tryptophan, phenylalanine and tyrosine in position 11, respectively) and tryptophan-N-formylated gramicidin (in which the four tryptophan residues have been formylated) with several phospholipid systems. In addition in α-helical model pentadecapeptide (P15) was studied to further test the specificity of the gramicidin-lipid interaction. DSC experiments showed that all the gramicidin analogs produced a significant decrease in the gel to liquid-crystalline transition enthalpy of dipalmitoylphosphatidylcholine. The P15 peptide was much less effective in this respect. In dielaidoylphosphatidylethanolamine the gel → liquid-crystalline transition enthalpy was much less affected by the incorporation of these molecules. In this lipid system tryptophan-N-formylated gramicidin was found to be the most ineffective. 31P-NMR and small angle X-ray diffraction experiments showed that the ability of the peptides to induce bilayer structures in palmitoyllysophosphatidylcholine and HII phase promotion in dielaidoylphosphatidylethanolamine systems follows the order: gramicidin A′ (natural mixture) ≈gramicidin A > gramicidin B ≈ gramicidin C > tryptophan-N-formylated gramicidin > P15. These results support the hypothesis that the shape of gramicidin and its aggregational behaviour, in which the tryptophan residues play an essential role, are major determinants in the unique lipid structure modulating activity of gramicidin.  相似文献   

15.
Structure of gramicidin A.   总被引:1,自引:5,他引:1       下载免费PDF全文
Gramicidin A, a hydrophobic linear polypeptide, forms channels in phospholipid membranes that are specific for monovalent cations. Nuclear Magnetic Resonance (NMR) spectroscopy provided the first direct physical evidence that the channel conformation in membranes is an amino terminal-to-amino terminal helical dimer, and circular dichroism (CD) spectroscopy has shown the sensitivity of its conformation to different environments and the structural consequences of ion binding. The three-dimensional structure of a gramicidin/cesium complex has been determined by x-ray diffraction of single crystals using single wavelength anomalous scattering for phasing. The left-handed double helix in this crystal form corresponds to one of the intermediates in the process of folding and insertion into membranes. Co-crystals of gramicidin and lipid that appear to have gramicidin in their membrane channel conformation have also been formed and are presently under investigation. Hence, we have used a combination of spectroscopic and diffraction techniques to examine the conformation and functionally-related structural features of gramicidin A.  相似文献   

16.
The conformational states in dioxane and ethanol of gramicidin A and of analogs varying in chain length and amino acid sequence have been studied. Infrared, CD, and polarization of fluorescence spectra of the peptides were measured, from which dimerization constants were determined and spectral characteristics of the monomeric and dimeric states obtained. Resonance splitting of the amide I ir band has been calculated for all gramicidin A models proposed earlier. Detailed comparison of the experimental and computed spectra showed that the four dimeric gramicidin species present in solution are predominantly antiparallel double ?ππld helices in equilibrium with smaller amounts of head-to-head associated πLD helices. The gramicidin A monomer was found to be a πLD4.4 helix in dioxane. For each conformational form the number of residues per turn and the helical sense were determined. The relationship between the amino acid sequence and the structure and stability of the dimer in the series of gramicidin A and its analogs is discussed. The above findings are rationalized in terms of the membrane channel properties of gramicidin A, in particular the conformational rearrangements occurring during the passage of metal ions through the channel and also the differences in conformation of the antibiotic in nonpolar solutions and in the membrane.  相似文献   

17.
Gramicidin A was dimerized with carbonsuboxide as bifunctional reagent. The effect of the resulting malonyl-bis-desformylgramicidin on lipid bilayer membranes was investigated and compared with the effect of the monomer gramicidin. It was found that the single channel conductance and the ion selectivity are very similar to the behaviour of the monomer molecule, whereas the channel forming kinetics and the life time of the single channel of the malonyl-bis-desformylgramicidin differ strongly from the behaviour of the monomer gramicidin. The electrical relaxations are very small and possibly associated with some structural changes of the membrane after a voltage jump. The single channel lifetime of the malonyl-bis-desformylgramicidin is measured in minutes, whereas for the same lipid system the single channel lifetime in the case of the monomer gramicidin is restricted to 1-2 s. It is concluded that the malonyl-bis-desformylgramicidin-molecule itself (as a single molecule) forms an ionic channel without further association.  相似文献   

18.
Gramicidin A was dimerized with carbonsuboxide as bifunctional reagent. The effect of the resulting malonyl-bis-desformylgramicidin on lipid bilayer membranes was investigated and compared with the effect of the monomer gramicidin. It was found that the single channel conductance and the ion selectivity are very similar to the behaviour of the monomer molecule, whereas the channel forming kinetics and the life time of the single channel of the malonyl-bis-desformylgramicidin differ strongly from the behaviour of the monomer gramicidin.The electrical relaxations are very small and possibly associated with some structural changes of the membrane after a voltage jump. The single channel lifetime of the malonyl-bis-desformylgramicidin is measured in minutes, whereas for the same lipid system the single channel lifetime in the case of the monomer gramicidin is restricted to 1–2 s. It is concluded that the malonyl-bis-desformylgramicidin-molecule itself (as a single molecule) forms an ionic channel without further association.  相似文献   

19.
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media.  相似文献   

20.
The gramicidin ion channel: a model membrane protein   总被引:3,自引:0,他引:3  
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号