首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique is described which permits the in vivo study of protein synthesis and phosphorylation in the pollen of Brassica spp. during the early stages of the pollen-stigma interaction. In Brassica napus and B. oleracea, compatible pollination is followed by a dramatic activation of protein synthesis in the pollen involving the synthesis of approximately 40 proteins. After incompatible pollinations in B. oleracea, virtually no newly synthesised polypeptides were detected in the pollen except for a small group of high molecular weight proteins which were not normally synthesised during compatible pollinations. Both compatible and incompatible pollinations were followed by the appearance of newly phosphorylated proteins in the pollen; these fell into four distinct groups. In B. oleracea, the number of phosphorylated proteins and the degree of phosphorylation of individual proteins within the four groups differed between compatible and incompatible pollinations. One group of phosphorylated proteins appeared to correspond with the small group of high molecular weight polypeptides which were synthesised in pollen after incompatible pollinations. These findings are discussed in the perspective of cell signalling during the pollen-stigma interaction in Brassica and also in terms of their possible implication in sporophytic self-incompatibility.  相似文献   

2.
Summary The organization of actin microfilaments (MFs) was studied during pollen development ofBrassica napus cv. Topas. Cells were prepared using three techniques and double labelled for fluorescence microscopy with rhodamine-labelled phalloidin for MFs and Hoechst 33258 for DNA. Microfilaments are present at all stages of pollen development with the exception of tricellular pollen just prior to anthesis. Unicellular microspores contain MFs which radiate from the surface of the nuclear envelope into the cytoplasm. During mitosis MFs form a network partially surrounding the mitotic apparatus and extend into the cytoplasm. Both cytoplasmic and phragmoplast-associated MFs are present during cytokinesis. Nuclear associated-, cytoplasmic, and randomly oriented cortical MFs appear in the vegetative cell of the bicellular microspore. Cortical MFs in the vegetative cell organize into parallel MF bundles (MFBs) aligned transverse to the furrows. The MFBs disappear prior to microspore elongation. At anthesis MFs are restricted to the cortical areas subjacent to the furrows of the vegetative cell. The use of cytochalasin D to disrupt MF function resulted in: (1) displacement of the acentric nucleus in the unicellular microspore; (2) displacement of the spindle apparatus in the mitotic cell; (3) symmetrical growth of the bicellular microspore rather than elongation and (4) inhibition of pollen tube germination in the mature pollen grain. This suggests that MFs play an important role in anchoring the nucleus in the unicellular microspore as well as the spindle apparatus during microspore mitosis, in microspore shape determination and in pollen tube germination.Abbreviations MF microfilament - MFB microfilament bundle - rhph rhodamine phalloidin Dedicated to the memory of Professor John G. Torrey  相似文献   

3.
4.
A. Kuang  M. E. Musgrave 《Protoplasma》1996,194(1-2):81-90
Summary Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation inArabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultra-structure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyo-somes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.  相似文献   

5.
Sato H  Saito C  Handa H 《Protoplasma》2004,224(3-4):179-185
Summary. Mitochondrial DNA in the male reproductive cells of rapeseed (Brassica napus L.) was monitored by fluorescence microscopy of Technovit 7100 resin sections double-stained with 4,6-diamidino-2-phenylindole and 3,3-dihexyloxacarbocyanine iodide. Mitochondrial DNA progressively decreased during pollen development and disappeared in mature pollen. This result corresponds well with the maternal inheritance of mitochondria in rapeseed determined by previous genetic analyses. To better characterize the mode of inheritance of the mitochondrial linear plasmid in rapeseed, which is transmitted through pollen, we analyzed by indirect immunofluorescence microscopy the expression and localization of ORF6 protein, a putative RNA polymerase encoded by the plasmid. ORF6 protein was expressed in mature pollen and specifically localized in the cytoplasm of sperm cells in the mature pollen. This suggests that the genes encoded by the plasmid DNA are transcribed in the mature pollen by its own RNA polymerase (ORF6 protein) and that the gene expression in the generative cells may be needed for transmission of plasmid DNA through the pollen.Present address: Laboratory of Plant Molecular Biology, Nara Institute of Science and Technology, Ikoma, Nara, Japan.Correspondence and reprints: Department of Plant Biotechnology, National Institute of Agrobiological Sciences, 2-1-2 Kan-non-dai, Tsukuba 305-8602, Japan.  相似文献   

6.
Summary The study of the formation of pollen in plants has been the focus of extensive morphologic and cytologic observations. This complex developmental process requires the coordinated activity of both gametophytic and sporophytic tissues. The events that occur during microspore development represent a carefully orchestrated program of physiologic, biochemical, and genetic activities. Genes expressed specifically in pollen or in sporophytic tissues that support pollen development have only recently been identified and desribed. In the present paper we describe several genes expressed during pollen development in the important oil seed speciesBrassica napus (oil seed rape/canola). The characterization of three gene families expressed during microspore development is reviewed which provides a basis for comparison with other genes expressed during pollen maturation. The, potential value of these genes for the development of novel plant breeding strategies and hybrid seed production is discussed. Presented in the Session-In-Depth In vitro, Gametophyte Biology at the 1991 World Congress on Cell and Tissue Culture held in Anaheim, CA, June 16–20, 1991.  相似文献   

7.
Summary The ultrastructure of the vegetative cell ofBrassica napus tricellular pollen grains, just before anthesis with standard chemical fixation, is reported. The vegetative cell may be regarded as a highly differentiated and metabolically active fat-storage cell. It contains many mitochondria with a well developed internal membrane system, starchless plastids, microbodies, lipid bodies, dictyosomes and numerous vesicles thought to originate from the dictysomes. Rough endoplasmic reticulum organized in stacks of cisternae is also spatially associated with certain organelles, mainly lipid bodies, microbodies and plastids. There are also randomly distributed polyribosome areas. The microbodies are mainly polymorphic in shape and are often observed in contact with lipid bodies. The above spatial relationship implies that the microbodies may have a glyoxysomal function. In the late period of vegetative cell maturation, the microbodies are probably involved in the process of glyconeogenesis in which the conversion of lipid reserves to sugar takes place.Abbreviations VC vegetative cell - VN vegetative nucleus - SC sperm cell - M mitochondria - MB microbodies - L lipid body - P plastid - D dictyosomes  相似文献   

8.
Pan G  Zhou Y  Fowke LC  Wang H 《Plant cell reports》2004,23(4):196-202
A simple and reliable method was developed for isolating pollen nuclei from Brassica napus and Triticum aestivum for DNA analysis using flow cytometry. The nuclei were released from pollen by ultrasonic treatment. The isolated nuclei following filtration through nylon mesh and a purification procedure were suitable for flow cytometric analysis as well as for isolating genomic DNA. Ultrasonic treatment time was optimized for B. napus pollen at different developmental stages. The method is effective and suitable for the preparation of many samples. We analyzed the nuclear DNA levels in pollen of B. napus at three major developmental stages as well as in mature wheat pollen. Only a single 1C peak representing the haploid DNA level was detected in the nuclei isolated from Brassica uninucleate microspores as well as in mature Triticum pollen. Interestingly, diploid nuclei were detected in both binucleate and mature pollen of B. napus. The possible origins of the diploid nuclei are discussed.Abbreviations DAPI 4,6-Diamidino-2-phenylindole - NIB Nuclear isolation buffer  相似文献   

9.
A cDNA clone, Sta 44-4, corresponding to a mRNA highly expressed in Brassica napus cv. Westar stamens, was isolated by differential screening and characterized. Northern blot and in situ analyses demonstrated that Sta 44-4 is synthesized in pollen beginning at the late uninucleate stage and reaches a maximum in trinucleate microspores. Sta 44-4 displayed significant sequence similarity to known pollen polygalacturonase genes. The B. napus pollen polygalacturonase gene was shown to be part of a small gene family and to display some polymorphism among different cultivars.  相似文献   

10.
Summary An attempt has been made to manipulate the cytological processes regulating the switch from gametophytic to sporophytic development induced by culturing the microspores of higher plants. Previous studies have indicated that sporophytic development, which leads to the formation of haploid embryos, normally follows the symmetrical division of the microspore rather than the asymmetric mitosis characteristic of normal development. To determine whether symmetry of division is a key factor in the determination of subsequent development, cells were supplied with the antimicrotubule drug colchicine to disrupt elements of the microtubular cytoskeleton believed to be involved in nuclear positioning. The treatment resulted in a highly significant increase in the numbers of cells turning to sporophytic development; further, timed applications indicated that the cells were sensitive to the drug over a 12-h period immediately prior to pollen mitosis. The results suggest that alteration of division symmetry is sufficient to switch the developmental pathway from gametophytic to sporophytic. These findings are discussed in the perspective of current models proposed for the regulation of development in eukaryotic cells.  相似文献   

11.
Summary Cytoskeletal organization and chromosome behavior were studied inTradescantia generative cells prior to and during sperm formation using in vitro grown pollen tubes and fluorescence staining methods. Before pollen germination, the crescent-shaped generative cell contains a reticulate microtubule (Mt) system. The cell elongates dramatically after germination, and its Mts assume a helical to longitudinal arrangement. Chromosome condensation is evident approximately 3hr after germination. Kinetochores appear as dark interruptions in the Mt array, and thus seem to attach directly to interphase fibers. No metaphase plate typical of other cells is observed with either DAPI or anti-tubulin staining. Instead, the chromosomes adopt a twisted or braided arrangement, with kinetochores distributed along the length of the cell and kinetochore fibers linked to each other and to surrounding fibers. Anaphase is characterized by a staggered, overlapping separation of chromosomes and by elongation of Mt branches connecting opposing kinetochore fibers. Cytokinesis appears to utilize a furrowing process; a phragmoplast or cell plate was never seen. As a result of these events, the sperm directly inherit their cytoskeleton from generative cell Mts involved in division. No actin fibers are observed at any stage using rhodamine-phalloidin staining. The results are discussed in terms of other reports on sperm formation, possible mitotic and cytokinetic mechanisms, and past distinctions between Mt arrays in higher plant somatic cells.Abbreviations CD cytochalasin D - DAPI 46-diamidino-2-phenyl-indole - DMSO dimethylsulfoxide - K-fiber kinetochore fiber - Mf microfilament - Mt microtubule - PPB preprophase Mt band - RP rhodamine phalloidin  相似文献   

12.
Summary Brassica napus and Brassica juncea were infected with a number of Agrobacterium tumefaciens strains. Tumourigenesis was very rapid and extremely efficient on B. juncea with all but one of the strains. Tumourigenesis on B. napus varied widely. It was very efficient with the nopaline strains, was reduced with the succinamopine strain A281 and was very weak with the octopine strains. The latter observation was confirmed with six different B. napus rapeseed cultivars. The selectivity was due to differences in the virulence of Ti plasmids with B. napus, rather than the tumourigenicity of the T-DNA or virulence of the chromosomal genes associated with the strains. An exception was strain LBA4404. The virulence of the octopine strains was increased by coinfection with more virulent disarmed strains and by induction with acetosyringone.  相似文献   

13.
The association of the two sperm cells inBrassica napus pollen following the generative cell division was investigated. The generative cell during division is located in the center of the pollen grain, within the vegetative cell. The space present between the two cells is slightly irregular as seen following standard glutaraldehyde fixation. After completion of mitosis vesicles appear in the equatorial plane, coalescing centripetally to form a cell plate which fuses with the membrane of the generative cell, dividing it in two sperm cells. They are isolated from the vegetative cell by the space between the two cell membranes and are separated from each other by a similar space resulting from the cell plate formed during cytokinesis.  相似文献   

14.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

15.
Summary Sperm cells of pollen tubes grown both in vivo and in vitro form a male germ unit. Extensions from both sperm cells of each pollen tube are closely associated with the tube nucleus. A high yield (2.7 × 104. 20 mg–1 pollen grains germinated) of intact sperm cells was obtained following release by osmotic shock from pollen tubes grown in vitro. Structural integrity of isolated sperm was maintained by isolation at low temperature in an osmotically balanced medium. At 4° C many isolated sperm pairs were still enclosed within the pollentube inner plasma membrane. Sperm cells not enclosed within this membrane no longer remained connected as a pair. During isolation vesicles formed on the sperm cell surface from disruption of the fibrillar components bridging the periplasmic space. Both in the pollen tube and after isolation the sperm nucleus is in close association with at least one region of the sperm plasma membrane. Sperm isolated at room temperature showed the presence of nucleopores, and nuclei were euchromatic, instead of heterochromatic as in intact sperm in the pollen tube.  相似文献   

16.
In this paper we describe the isolation and characterization of a genomic clone (Bp4) from Brassica napus which contains three members of a pollen-specific multigene family. This family is composed of 10 to 15 closely related genes which are expressed in early stages of microspore development. The complete nucleotide sequence of the clone Bp4 and of three homologous cDNA clones is reported. One of the genes (Bp4B) contained in the genomic clone is believed to be non-functional because of sequence rearrangements in its 5 region and intron splicing sites. The remaining genes (Bp4A and Bp4C), as well as the cDNA clones, appear to code for small proteins of unique structure. Three different types of proteins can be predicted as a result of the deletion of carboxy or amino terminal portions of a conserved core protein. These proteins all share a common alternation of hydrophobic and hydrophilic domains. A fragment of the genomic clone containing the gene Bp4A, as well as the non-functional gene Bp4B, was introduced into tobacco plants via Agrobacterium-mediated transformation. The functional gene Bp4A is expressed in transgenic tobacco plants and shows spatial and temporal regulation consistent with the expression patterns seen in Brassica napus.  相似文献   

17.
Changes in nuclear pore complex (NPC) densities, NPCs/nucleus and NPCs/μm3, are described using freeze-fractured Brassica napus microspores and pollen in vivo and in vitro. Early stages of microspore- and pollen-derived embryogenic cells were also analysed. The results of in vivo and in vitro pollen development indicate an increase in activity of the vegetative nucleus during maturation of the pollen. At the onset of microspore and pollen culture, NPC density decreased from 15 NPCs/μm2 at the stage of isolation to 9 NPCs/μm2, under both embryogenic and non-embryogenic conditions. This implies that the drop in NPC density might be a result of culturing the microspores and pollen rather than an indication for microspore and pollen embryogenesis in Brassica napus. However, after 1 day in culture under embryogenic conditions, the NPC density increased again and stabilised around 13 NPCs/μm2, whereas under non-embryogenic conditions the NPC density remained about 9 NPCs/μm2. This low density of 9 NPCs/μm2 was also found in the nuclei of sperm cells, in contrast to the 19 NPCs/μm2 found in the vegetative nucleus. It means that, although both the vegetative and sperm nuclei are believed to be metabolically rather inactive in mature pollen, the NPC density of vegetative nucleus is twice as high as the NPC density of the sperm nuclei. In a few cases, embryos formed suspensor-like structures with a NPC density of 9 NPCs/μm2, indicating a lower nucleocytoplasmic exchange of the nuclei of the suspensor cells than with the nuclei in the embryo proper. In addition, observations on NPCs and other organelles, obtained by high resolution cryo-scanning microscopy, are presented. Received: 29 December 1999 / Revision accepted: 3 March 2000  相似文献   

18.
The objective of this study was to evaluate pollen dispersal inBrassica napus (oilseed rape). The selectable marker, used to follow pollen movement, was a dominant transgene (bar) conferring resistance to the herbicide glufosinate-ammonium. Transgenic and non-transgenic plants of the cultivar Westar were planted in a 1.1 ha field trial, with the transgenic plants in a 9 m diameter circle at the centre, surrounded by non-transgenic plants to a distance of at least 47 m in all directions. A 1 m circle of non-transgenic plants was sown in the centre of the transgenic area to allow estimation of the level of pollen dispersal when plants were in close contact. Honeybee hives were placed at the trial site to optimize the opportunity for cross-pollination. During the flowering period, regular observations were made of the number of plants flowering and the number and type of insects present in 60 1 m2 areas. These areas were located uniformly around the plot at distances of 1, 3, 6, 12, 24, 36 and 47 m from the edge of the 9 m circle of transgenic plants. Seed samples were harvested from each of the 7 distances so that approximately 20% of the circumference of the plot was sampled at each distance. The centre non-transgenic circle was also sampled. Plants were grown from the seed samples and sprayed with glufosinate to estimate the frequency of pollen dispersal at each distance. In order to screen enough samples to detect low frequency cross-pollination events, seed samples were tested in the greenhouse and on a larger scale in the field. Results were confirmed by testing progeny for glufosinate resistance and by Southern blot analysis. The estimated percentage of pollen dispersal in the non-transgenic centre circle was 4.8%. The frequency was estimated to be 1.5% at a distance of 1 m and 0.4% at 3 m. The frequency decreased sharply to 0.02% at 12 m and was only 0.00033% at 47 m. No obvious directional effects were detected that could be ascribed to wind or insect activity.  相似文献   

19.
Summary Somatic hybridization between Brassica napus and B. hirta (or Sinapis alba) is described. No cybrid plant with B. napus nucleus exhibiting cytoplasmic male sterility was recovered. Somatic hybrids were identified morphologically and, for some of them, by cytological observations. They were also characterised by Southern hybridization of nuclear rDNA. Chloroplast and mitochondrial DNA restriction analysis showed that 2 plants out of 14 have B. hirta ctDNA, one the B. napus mtDNA and the other a hybrid. Nine possess B. napus ctDNA with a hybrid mtDNA. For six of them, mtDNA patterns present novel bands, suggesting intergenomic recombination during fusion. These hybrids will be included in the breeding program.  相似文献   

20.
Summary Natural rapeseed (Brassica napus L.; AACC 2n=38), originated in the temperate climate of the Southwest European Mediterranean region, fails to complete its generative phase in the subtropics and is thus not cultivated in countries like Bangladesh. Adapted agroecotypes are available from the diploid representatives of its genome A (B. campestris/pekinensis, 2n=20) and C (B. oleracea/alboglabra, 2n=18). An artificial resynthesis based on carefully selected progenitor lines was expected to give a photoperiodically better adapted rapeseed. B. pekinensis x B. oleracea/alboglabra gave 2 hybrids and 87 matromorphous plants from 1,448 crossed flowers and the reciprocal combination gave no hybrid but 11 matromorphous plants from 2,228 pollinated flowers. The two true hybrids were vegetatively propagated and chromosome doubled. Part of the F2 was grown in Sweden (all plants flowered and the most early ones were selected), part in Bangladesh (13 out of 706 plants flowered). The selected F3 material flowered in Bangladesh and transgressions in earliness could be recorded, some lines were of definite agronomic potential. A correlation in earliness between reaction in Sweden (long day) and Bangladesh (short day) was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号