首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

2.
DsbA and DsbC, members of the thioredoxin super-family of redox proteins, which are expressed in the periplasmic space of Escherichia coli, were cloned into and successfully secreted from Brevibacillus choshinensis at 100 g ml–1. Both proteins were active in exchanging disulfide bonds of bovine insulin in vitro. Furthermore, DsbA secreted by B. choshinensis promoted the conversion of non-native human epidermal growth factor to the native form.  相似文献   

3.
Mercuric reductase, with FAD and a reducible disulfide at the active site, catalyzes the two-electron reduction of Hg(II) by NADPH. Addition of reducing equivalents rapidly produces a spectrally distinct EH2 form of the enzyme containing oxidized FAD and reduced active site thiols. Formation of EH2 has previously been reported to require only 2 electrons for reduction of the active site disulfide. We present results of anaerobic titrations of mercuric reductase with NADPH and dithionite showing that the equilibrium conversion of oxidized enzyme to EH2 actually requires 2 equiv of reducing agent or 4 electrons. Kinetic studies conducted both at 4 degrees C and at 25 degrees C indicate that reduction of the active site occurs rapidly, as previously reported [Sahlman, L., & Lindskog, S. (1983) Biochem. Biophys. Res. Commun. 117, 231-237]; this is followed by a slower reduction of another redox group via reaction with the active site. Thiol titrations of denatured Eox and EH2 enzyme forms show that an additional disulfide is the group in communication with the active site. [14C]Iodoacetamide labeling experiments demonstrate that the C-terminal residues, Cys558 and Cys559, are involved in this disulfide. The fluorescence, but not the absorbance, of the enzyme-bound FAD was found to be highly dependent on the redox state of the C-terminal thiols. Thus, Eox with Cys558 and Cys559 as thiols exhibits less than 50% of the fluorescence of Eox where these residues are present as a disulfide, indicating that the thiols remain intimately associated with the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Thiol/disulfide oxidoreductases like thioredoxin, glutaredoxin, DsbA, or protein disulfide isomerase (PDI) share the thioredoxin fold and a catalytic disulfide bond with the sequence Cys-Xaa-Xaa-Cys (Xaa corresponds to any amino acid). Despite their structural similarities, the enzymes have very different redox properties, which is reflected by a 100,000-fold difference in the equilibrium constant (K(eq)) with glutathione between the most oxidizing member, DsbA, and the most reducing member, thioredoxin. Here we present a systematic study on a series of variants of thioredoxin from Escherichia coli, in which the Xaa-Xaa dipeptide was exchanged by that of glutaredoxin, PDI, and DsbA. Like the corresponding natural enzymes, all thioredoxin variants proved to be stronger oxidants than the wild-type, with the order wild-type < PDI-type < DsbA-type < glutaredoxin-type. The most oxidizing, glutaredoxin-like variant has a 420-fold decreased value of K(eq), corresponding to an increase in redox potential by 75 mV. While oxidized wild-type thioredoxin is more stable than the reduced form (delta deltaG(ox/red) = 16.9 kJ/mol), both redox forms have almost the same stability in the variants. The pH-dependence of the reactivity with the alkylating agent iodoacetamide proved to be the best method to determine the pKa value of thioredoxin's nucleophilic active-site thiol (Cys32). A pKa of 7.1 was measured for Cys32 in the reduced wild-type. All variants showed a lowered pKa of Cys32, with the lowest value of 5.9 for the glutaredoxin-like variant. A correlation of redox potential and the Cys32 pKa value could be established on a quantitative level. However, the predicted correlation between the measured delta deltaG(ox/red) values and Cys32 pKa values was only qualitative.  相似文献   

6.
DsbB is a disulfide oxidoreductase present in the Escherichia coli plasma membrane. Its cysteine pairs, Cys41-Cys44 and Cys104-Cys130, facing the periplasm, as well as the bound quinone molecules play crucial roles in oxidizing DsbA, the protein dithiol oxidant in the periplasm. In this study, we characterized quinone-free forms of DsbB prepared from mutant cells unable to synthesize ubiquinone and menaquinone. While such preparations lacked detectable quinones, previously reported lauroylsarcosine treatment was ineffective in removing DsbB-associated quinones. Moreover, DsbB-bound quinone was shown to contribute to the redox-dependent fluorescence changes observed with DsbB. Now we reconfirmed that redox potentials of cysteine pairs of quinone-free DsbB are lower than that of DsbA, as far as determined in dithiothreitol redox buffer. Nevertheless, the quinone-free DsbB was able to oxidize approximately 40% of DsbA in a 1:1 stoichiometric reaction, in which hemi-oxidized forms of DsbB having either disulfide are generated. It was suggested that the DsbB-DsbA system is designed in such a way that specific interaction of the two components enables the thiol-disulfide exchanges in the "forward" direction. In addition, a minor fraction of quinone-free DsbB formed the DsbA-DsbB disulfide complex stably. Our results show that the rapid and the slow pathways of DsbA oxidation can proceed up to significant points, after which these reactions must be completed and recycled by quinones under physiological conditions. We discuss the significance of having such multiple reaction pathways for the DsbB-dependent DsbA oxidation.  相似文献   

7.
The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing (E0 of −144 mV), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of TbQSOX is strongly reducing (E0 of −273 mV), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor (E0 of −153 mV) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of TbQSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited in other catalysts of oxidative protein folding.  相似文献   

8.
The membrane protein DsbB from Escherichia coli is essential for disulfide bond formation and catalyses the oxidation of the periplasmic dithiol oxidase DsbA by ubiquinone. DsbB contains two catalytic disulfide bonds, Cys41-Cys44 and Cys104-Cys130. We show that DsbB directly oxidizes one molar equivalent of DsbA in the absence of ubiquinone via disulfide exchange with the 104-130 disulfide bond, with a rate constant of 2.7 x 10 M(-1) x s(-1). This reaction occurs although the 104-130 disulfide is less oxidizing than the catalytic disulfide bond of DsbA (E(o)' = -186 and -122 mV, respectively). This is because the 41-44 disulfide, which is only accessible to ubiquinone but not to DsbA, is the most oxidizing disulfide bond in a protein described so far, with a redox potential of -69 mV. Rapid intramolecular disulfide exchange in partially reduced DsbB converts the enzyme into a state in which Cys41 and Cys44 are reduced and thus accessible for reoxidation by ubiquinone. This demonstrates that the high catalytic efficiency of DsbB results from the extreme intrinsic oxidative force of the enzyme.  相似文献   

9.
The membrane bound fumarate reductase (FRD) from the sulphate-reducer Desulfovibrio gigas was purified from cells grown on a fumarate/sulphate medium and extensively characterized. The FRD is isolated with three subunits of apparent molecular masses of 71, 31, and 22 kDa. The enzyme is capable of both fumarate reduction and succinate oxidation, exhibiting a higher specificity toward fumarate (K m for fumarate is 0.02 and for succinate 2 mM) and a reduction rate 30 times faster than that for oxidation. Studies by Visible and EPR spectroscopies allowed the identification of two B-type haems and the three iron–sulphur clusters usually found in FRDs and succinate dehydrogenases: [2Fe-2S]2+/1+ (S1), [4Fe-4S]2+/1+ (S2), and [3Fe-4S]1+/0 (S3). The apparent macroscopic reduction potentials for the metal centers, at pH 7.6, were determined by redox titrations: –45 and –175 mV for the two haems, and +20 and –140 mV for the S3 and S1 clusters, respectively. The reduction potentials of the haem groups are pH dependent, supporting the proposal that fumarate reduction is associated with formation of the membrane proton gradient. Furthermore, co-reconstitution in liposomes of D. gigas FRD, duroquinone, and D. gigas cytochrome bd shows that this system is capable of coupling succinate oxidation with oxygen reduction to water.  相似文献   

10.
Inaba K  Ito K 《The EMBO journal》2002,21(11):2646-2654
Protein disulfide bond formation in the bacterial periplasm is catalyzed by the Dsb enzymes in conjunction with the respiratory quinone components. Here we characterized redox properties of the redox active sites in DsbB to gain further insights into the catalytic mechanisms of DsbA oxidation. The standard redox potential of DsbB was determined to be -0.21 V for Cys41/Cys44 in the N-terminal periplasmic region (P1) and -0.25 V for Cys104/Cys130 in the C-terminal periplasmic region (P2), while that of Cys30/Cys33 in DsbA was -0.12 V. To our surprise, DsbB, an oxidant for DsbA, is intrinsically more reducing than DsbA. Ubiquinone anomalously affected the apparent redox property of the P1 domain, and mutational alterations of the P1 region significantly lowered the catalytic turnover. It is inferred that ubiquinone, a high redox potential compound, drives the electron flow by interacting with the P1 region with the Cys41/Cys44 active site. Thus, DsbB can mediate electron flow from DsbA to ubiquinone irrespective of the intrinsic redox potential of the Cys residues involved.  相似文献   

11.
The redox properties of periplasmic protein disulfide isomerase (DsbA) from Escherichia coli were analyzed by measuring the equilibrium constant of the oxidation of reduced DsbA by oxidized glutathione. The experiments are based on the finding that the intrinsic tryptophan fluorescence of DsbA increases about threefold upon reduction of the enzyme, which can be explained by the catalytic disulfide bridge quenching the fluorescence of a neighboring tryptophan residue. From the specific fluorescence of DsbA equilibrated in the presence of different ratios of reduced and oxidized glutathione at pH 7, an equilibrium constant of 1.2 x 10(-4) M was determined, corresponding to a standard redox potential (E'0) of DsbA of -0.089 V. Thus, DsbA is a significantly stronger oxidant than cytoplasmic thioredoxins and its redox properties are similar to those of eukaryotic protein disulfide isomerase. The equilibrium constants for the DsbA/glutathione equilibrium were found to be strongly dependent on pH and varied from 2.5 x 10(-3) M to 3.9 x 10(-5) M between pH 4 and 8.5. The redox state-dependent fluorescence properties of DsbA should allow detailed physicochemical studies of the enzyme as well as the quantitative determination of the oxidized protein by fluorescence titration with dithiothreitol and open the possibility to observe bacterial protein disulfide isomerase "at work" during catalysis of oxidative protein folding.  相似文献   

12.
用生物标记的方法将色氨酸类似物标记在DsbA蛋白中的色氨酸位置,分析标记蛋白质的谱学性质、色氨酸结构环境和潜在应用前景.5-OH-Trp标记的DsbA蛋白具有315 nm激发的荧光发射光谱;19F-NMR 能分辨5-F-Trp标记的DsbA蛋白的两个F-Trp残基(Trp76和Trp126),Trp76化学位移变化反映二硫键交换引起的结构转化.进一步将利用标记蛋白的独特荧光和19F-NMR性质,研究DsbA蛋白的氧化还原及与底物蛋白的结合作用.  相似文献   

13.
The λ Rz and Rz1 proteins are the subunits of the spanin complex, required for the disruption of the outer membrane during host lysis. Rz, the inner membrane or i‐spanin, has a largely alpha‐helical periplasmic domain, whereas Rz1, the outer membrane or o‐spanin, has a 25% proline content with no predicted secondary structure. We report that both Rz and Rz1 accumulate as homodimers covalently linked by intermolecular disulfide bonds involving all three Cys residues, two in Rz and one in Rz1. Moreover, of these three intermolecular disulfides, spanin function requires the presence of at least one of the two linkages nearest the Rz–Rz1 C‐terminal interaction domains; i.e. either the Rz1–Rz1 disulfide or the distal Rz–Rz disulfide link. In a dsbC host, but not in dsbA or dsbA dsbC hosts, formation of the covalent homodimers of Rz is severely reduced and outer membrane disruption is significantly delayed, suggesting that the spanin pathway normally proceeds through DsbA‐mediated formation of an intramolecular disulfide in Rz. In contrast, efficient formation of the Rz1–Rz1 disulfide requires DsbA. Finally, Dsb‐independent formation of the covalent homodimer of either subunit requires the presence of the other, presumably as a template for close apposition of the thiols.  相似文献   

14.
A fluorescent dye, 1-dimethylaminonaphthalene-5-sulfonyl chloride, was used to label bovine serum albumin (BSA), intact and disulfide bridges-cleaved. The fluorescence lifetime and fluorescence anisotropy of the adducts in sodium dodecyl sulfate (SDS) solutions were studied by the nanosecond fluorescence depolarization method. The volume of equivalent sphere (V e) was calculated to be 2.1×10–19 cm3 for BSA with the intact disulfide bridges from the rotational correlation time. The value ofV e was 4.4×10–19 cm3 for the disulfide bridges-cleaved BSA. With an increase in SDS concentration, the rotational correlation time of the intact BSA became longer, while that of the disulfide bridges-cleaved BSA became shorter. This suggests that upon the binding of SDS, the total volume of the intact BSA increases while the expanded state of the protein, caused by the cleavage of the disulfide bridges, becomes compact.  相似文献   

15.
16.
 The model alkylating agent N-ethylmaleimide (NEM) reacts reversibly at the metal-bound thiolates of Zn7MT and Cd7MT. An unprecedented feature of this reaction is that it approaches equilibrium and requires a large excess of NEM (>1 mM for 3 μM protein) to drive it to completion. The complex kinetics of the reaction can be followed by monitoring the release of bound metal ions using the metallochromic dyes Zincon (ZI) for Zn7MT and pyridylazoresorcinol for Cd7MT. An initial lag phase is followed by more rapid release of zinc ions. The observed pseudo-first-order rate constants for the two phases are independent of the ZI and Zn7MT concentrations. The complex NEM concentration dependence of each phase, k f, obs=k f 1+k f 2 [NEM] and k s, obs=k s 1+k s 2 [NEM], demonstrates that the forward reactions are second order and the reverse reactions are first order. The alkylation can be reversed using 2-mercaptoethanol to compete for the protein-bound NEM and regenerate the Zn-binding capability of alkylated MT. An explanation of these observations, based on the reversibility of cysteine alkylation by NEM, was developed and tested. The reactions of Cd7MT are less complete than those of Zn7MT and occur more slowly. 111Cd-NMR studies of the partially alkylated 111Cd7MT reveal that reaction with only four equivalents of NEM completely alters the cluster structure and eliminates the spectral signatures of the α and β clusters, although very little cadmium has been removed from the protein. This finding substantiates the proposed kinetic intermediate, a partially alkylated MT with complete or nearly complete retention of the metal ions, and rules out the possibility of cooperative reactions at either cluster. Received: 5 August 1996 / Accepted: 24 October 1996  相似文献   

17.
The cytochrome c maturation process is carried out in the bacterial periplasm, where some specialized thiol‐disulfide oxidoreductases work in close synergy for the correct reduction of oxidized apocytochrome before covalent heme attachment. We present a structural and functional characterization of the soluble periplasmic domain of CcmG from the opportunistic pathogen P. aeruginosa (Pa‐CcmG), a component of the protein machinery involved in cyt c maturation in gram‐negative bacteria. X‐ray crystallography reveals that Pa‐CcmG is a TRX‐like protein; high‐resolution crystal structures show that the oxidized and the reduced forms of the enzyme are identical except for the active‐site disulfide. The standard redox potential was calculated to be E0′ = ?0.213 V at pH 7.0; the pKa of the active site thiols were pKa = 6.13 ± 0.05 for the N‐terminal Cys74 and pKa = 10.5 ± 0.17 for the C‐terminal Cys77. Experiments were carried out to characterize and isolate the mixed disulfide complex between Pa‐CcmG and Pa‐CcmH (the other redox active component of System I in P. aeruginosa). Our data indicate that the target disulfide of this TRX‐like protein is not the intramolecular disulfide of oxidized Pa‐CcmH, but the intermolecular disulfide formed between Cys28 of Pa‐CcmH and DTNB used for the in vitro experiments. This observation suggests that, in vivo, the physiological substrate of Pa‐CcmG may be the mixed‐disulfide complex between Pa‐CcmH and apo‐cyt. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Echistatin is a 49-amino-acid protein fromEchis carinatus venom. It contains four disulfide bonds. Since the disulfide bonding is critical for biological activity, it is very important to assign the disulfide linkage in this protein. Echistatin was incubated in 250 mM oxalic acid at 100°C for 4 hr under nitrogen. Under these conditions, many overlapping disulfide-containing peptides were identified by ionspray mass spectrometry. Ionspray MS/MS data indicate that the four disulfide bonds are Cys 2–Cys 11, Cys 7–Cys 32, Cys 8–Cys 37, and Cys 20–Cys 39. To our knowledge, this is the first time all four disulfide bonds in echistatin have been assigned in one experiment without disulfide bond exchange. This approach, which combines oxalic acid hydrolysis and ionspray MS/MS, may be very useful for assigning disulfide bridges in other proteins from the disintegrin family.  相似文献   

19.
Kobayashi T  Ito K 《The EMBO journal》1999,18(5):1192-1198
Escherichia coli DsbB has four essential cysteine residues, among which Cys41 and Cys44 form a CXXC redox active site motif and the Cys104-Cys130 disulfide bond oxidizes the active site cysteines of DsbA, the disulfide bond formation factor in the periplasm. Functional respiratory chain is required for the cell to keep DsbA oxidized. In this study, we characterized the roles of essential cysteines of DsbB in the coupling with the respiratory chain. Cys104 was found to form the inactive complex with DsbA under respiration-defective conditions. While DsbB, under normal aerobic conditions, is in the oxidized state, having two intramolecular disulfide bonds, oxidation of Cys104 and Cys130 requires the presence of Cys41-Cys44. Remarkably, the Cys41-Cys44 disulfide bond is refractory to reduction by a high concentration of dithiothreitol, unless the membrane is solubilized with a detergent. This reductant resistance requires both the respiratory function and oxygen, since Cys41-Cys44 became sensitive to the reducing agent when membrane was prepared from quinone- or heme-depleted cells or when a membrane sample was deaerated. Thus, the Cys41-Val-Leu-Cys44 motif of DsbB is kept both strongly oxidized and strongly oxidizing when DsbB is integrated into the membrane with the normal set of respiratory components.  相似文献   

20.
Arsenic (III) methyltransferase (AS3MT) is a cysteine (Cys)-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) to analyze Cys residues in recombinant human arsenic (III) methyltransferase (hAS3MT). We detected two disulfide bonds, Cys250-Cys32 and Cys368-Cys369, in hAS3MT. The Cys250-Cys32 disulfide bond was reduced by glutathione (GSH) or other disulfide bond reductants before the enzymatic methylation of arsenite (iAs3+). In addition to exposing residues around the active sites, cleavage of the Cys250-Cys32 pair modulated the conformation of hAS3MT. This adjustment may stabilize the binding of S-Adenosyl-L-methionine (AdoMet) and favor iAs3+ binding to hAS3MT. Additionally, we observed the intermediate of Cys250-S-adenosylhomocysteine (AdoHcy), suggesting that Cys250 is involved in the transmethylation. In recovery experiments, we confirmed that trivalent arsenicals were substrates for hAS3MT, methylation of arsenic occurred on the enzyme, and an intramolecular disulfide bond might be formed after iAs3+ was methylated to dimethylarsinous acid (DMA3+). In this work, we clarified both the functional roles of GSH and the crucial Cys residues in iAs3+ methylation catalyzed by hAS3MT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号