首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular specificity of the biosynthesis of triacylglycerols by rat intestinal mucosa was examined by means of radioactive and mass tracers, and thin-layer chromatography with silver nitrate and gas-liquid chromatography with radioactivity monitoring. Bile salt micelles of alternately labeled monoacylglycerols and free fatty acids were incubated with everted sacs of intestinal mucosa for various periods of time and the triacylglycerols isolated by solvent extraction and thin-layer chromatography. Analyses of the molecular species of the triacylglycerols labeled from monoacylglycerols showed that the 2-monoacylglycerol pathway was responsible for the biosynthesis of a maximum of 90% and the X-1-monoacylglycerol pathway for about 10% of the total radioactive triacylglycerols. Detailed analyses of the molecular species of triacylglycerols labeled fro free fatty acids showed that the phosphatidic acid pathway contributed a minimum of 20-30% of the total labeled triacylglycerol formed. There was a preferential utilization in triacylglycerol biosynthesis of the more unsaturated diacylglycerols arising from the monoacylglycerol pathway and of the more saturated diacylglycerols originating from the phosphatidic acid pathway. The above experiments do not allow a demonstration of the utilization of the sn-2,3-diacylglycerols in triacylglycerol biosynthesis but are not inconsistent with it.  相似文献   

2.
The biosynthesis of diacylglycerols was studied in rat intestinal mucosa during in vivo absorption of a low molecular weight fraction fraction of butter oil and of the corresponding medium and long chain fatty acids. The experimental fat solutions were given by stomach tube to the animals after a 24-h fast and mucosal scraping were collected 3 h later. The lipids were isolated and the acylclycerols determined by combined thin-layer chromatography gas-liquid chromatography techniques and stereospecific analyses. Free fatty acid feeding led mainly to sn-1,2-diacyl-glycerols, which contained exogenous and endogenous fatty acids. During triacylglycerol feeding, both sn-1,2-and sn-2,3-diacylglycerols were recovered in significant amounts from the intestinal mucosa. The composition of the sn-2,3-diacylglycerols corresponded to that with exogenous fatty acids but the sn-1,2-diacylglycerols clearly contained both exogenous and endogenous fatty acids. In all cases it was possible to isolate endogenous sn-1,2-diacylglycerols made up largely of species with linoleic and arachidonic acids in the 2 position and palmitic and stearic acids in the 1 position, which apparently were not converted to triacylglycerols. The in vivo reacylation of 2-monoacylglycerols via both sn-1,2- and sn-2,3-diacylglycerols is in agreement with similar findings in vitro with everted sacs of rat intestinal mucosa.  相似文献   

3.
Triacylglycerols are a major source of stored energy that are obtained either from the diet or can be synthesized to some extent by most tissues. Alterations in pathways of triacylglycerol metabolism can result in their excessive accumulation leading to obesity, insulin resistance, cardiovascular disease and nonalcoholic fatty liver disease. Most tissues in mammals synthesize triacylglycerols via the glycerol 3-phosphate pathway. However, in the small intestine the monoacylglycerol acyltransferase pathway is the predominant pathway for triacylglycerol biosynthesis where it participates in the absorption of dietary triacylglycerol. In this review, the enzymes that are part of both the glycerol 3-phosphate and monoacylglycerol acyltransferase pathways and their contributions to intestinal triacylglycerol metabolism are reviewed. The potential of some of the enzymes involved in triacylglycerol synthesis in the small intestine as possible therapeutic targets for treating metabolic disorders associated with elevated triacylglycerol is briefly discussed.  相似文献   

4.
The relative acyltransferase activities were compared in homogenates of rat jejunal villus and crypt cells isolated by differential scraping and hyaluronidase dispersion. The contributions of the monoacylglycerol and phosphatidic acid pathways to the higher acylglycerol and phospholipid biosynthesis were assessed using 2-oleoyl-sn-[3H] glycerol and [I-14C] palmitic acid as tracers. The stereochemical course of the diacylglycerol biosynthesis was determined by stereospecific analysis. Using 2-oleoyl-sn-glycerol as a tracer, the villus cells exhibited for times higher diacylglycerol and 19 times higher triacylglycerol biosynthesis than crypt cells on an equivalent protein basis. Furthermore, while the villus cell homogenates yielded a preponderance (75%) of the 1, 2-diacyl-sn-glycerols, the crypt cell homogenates formed essentially racemic proportions of 1, 2- and 2,3-diacyl-sn-glycerols. Both villus and crypt cell homogenates exhibited comparable acyl acceptor and acyl donor concentration dependence and the same cofactor requirements. It is unlikely that these acyltransferase activities in the crypt cell preparation are due to contamination with the villus cells, because then more comparable proportions of the enantiomeric diacylglycerols and triacylglycerols would have been anticipated. It is concluded that the crypt cells possess intrinsic monoacylglycerol and to a much lesser extent diacylglycerol acyltransferase activities, which are acquired prior to the development of a distinct brush border and which probably do not require dietary stimulus for induction.  相似文献   

5.
The structure of mucosal triacylglycerols was studied in rat intestinal mucosa in vivo during the absorption of a low molecular weight fraction of butter oil and of the corresponding free fatty acids of medium and long chain length. The mucosal lipids were isolated by solvent extraction and the acylglycerol structures were determined by combined AgNO3- thin-layer chromatography and gas-liquid chromatography techniques and stereospecific analysis. Evidence was obtained for a rapid biosynthesis of triacylglycerols from diacylglycerols arising from the operation of both the monoacylglycerol and the phosphatidic acid biosynthetic pathways. Both sn-1,2- and sn-2,3-diacylglycerols appeared to be converted to triacylglycerols at significant rates, but a preferential utilization of sn-1,2-diacylglycerols could not be excluded. Endogenous dilution varied from a miniumum of 5% during triacylglycerol biosynthesis from monoacylglycerols to 15% during their synthesis from free fatty acids, and was characterized by a preferential placement of the endogenous acids in the sn-3 and 2 positions of the triacylglycerol molecules. Exogenous myristic acid was preferentially associated with the sn-3 position, and stearic acid became preferentially bound to the sn-1 position. The complexity of the triacylglycerol end products prevented an exact estimate of the contribution of the phosphatidic acid pathway, but the acylglycerol structures were compatible with a minimum of 20% of total triacylglycerol yield at all times.  相似文献   

6.
The molecular specificity in the biosynthesis of diacylglycerols by rat intestinal mucosa was examined by means of radioactive markers, thin-layer chromatography with silver nitrate and gas-liquid chromatography with radioactivity monitoring. Bile salt micelles of alternately labeled monoacyglycerols and free fatty acids were incubated with everted sacs of intestinal mucosa for various periods of time and the diacylglycerols were isolated by solvent extraction and thin-layer chromatography. Sterospecific analyses of the X-1,2-diacylglycerols labeled from 2-monoacylglycerols showed that the sn-1,2-isomers (45-55%) were slightly in excess of the sn-2,3-isomers (34-45%) with the X-1,3-diacylglycerols accounting for the rest of the radioactivity (5-10%). This suggests that racemic diacylglycerols may be intermediates in the resynthesis of dietary fat in rat intestinal mucosa. Detailed analyses of the molecular species of the sn-1,2-diacylglycerols labeled from free fatty acids revealed that 10-45% of the total did not contain the acid present in the 2-monoacylglycerol supplied, and therefore had originated from the phosphatidic acid pathway. These findings are at variance with those obtained in isolated microsomes, which have suggested an inhibition of the phosphatidic acid pathway by monoacylglycerols as well as have given evidence of an exclusive synthesis of sn-1,2-diacylglycerols from 2-monoacylglycerols.  相似文献   

7.
The effect of puromycin on phosphatidylcholine and triacylglycerol synthesis was studied in isolated cells of rat intestinal mucosa using radioactive palmitate, glycerol, 2-hexadecylglycerol, and lysophosphatidylcholine as markers. Puromycin caused a 60–65% inhibition of phosphatidylcholine biosynthesis but did not affect the formation of triacylglycerols. Under comparable conditions protein synthesis was inhibited 90–95% and glycoprotein synthesis 60–70%. The utilization of the various lipid precursors indicated that puromycin inhibited the biosynthesis of phosphatidylcholine via both the CDP-choline and the lysophosphatidylcholine pathways, without interfering with triacylglycerol synthesis from either phosphatidic acid or monoacylglycerol precursors. Since both phosphatidylcholines and proteins are involved in the assembly of chylomicrons, it is suggested that the effect of puromycin on chylomicron formation could be due to an inhibition of the biosynthesis of any one or all three of the membrane components: proteins, glycoproteins, and phosphatidylcholines.  相似文献   

8.
The mechanism for the reduced hepatic production of triacylglycerol in the presence of eicosapentaenoic acid was explored in short-term experiments using cultured parenchymal cells and microsomes from rat liver. Oleic, palmitic, stearic, and linoleic acids were the most potent stimulators of triacyl[3H]glycerol synthesis and secretion by hepatocytes, whereas erucic, alpha-linolenic, gamma-linolenic, arachidonic, docosahexaenoic, and eicosapentaenoic acids (in decreasing order) were less stimulatory. There was a linear correlation (r = 0.85, P less than 0.01) between synthesis and secretion of triacyl[3H]glycerol for the fatty acids examined. The extreme and opposite effects of eicosapentaenoic and oleic acids on triacylglycerol metabolism were studied in more detail. With increasing number of free fatty acid molecules bound per molecule of albumin, the rate of synthesis and secretion of triacyl[3H]glycerol increased, most markedly for oleic acid. Cellular uptake of the two fatty acids was similar, but more free eicosapentaenoic acid accumulated intracellularly. Eicosapentaenoic acid caused higher incorporation of [3H]water into phospholipid and lower incorporation into triacylglycerol and cholesteryl ester as compared to oleic acid. No difference was observed between the fatty acids on incorporation into cellular free fatty acids, monoacylglycerol and diacylglycerol. The amount of some 16- and 18-carbon fatty acids in triacylglycerol was significantly higher in the presence of oleic acid compared with eicosapentaenoic acid. Rat liver microsomes in the presence of added 1,2-dioleoyl-glycerol incorporated eicosapentaenoic acid and eicosapentaenoyl-CoA into triacylglycerol to a lesser extent than oleic acid and its CoA derivative. Decreased formation of triacylglycerol was also observed when eicosapentaenoyl-CoA was given together with oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linoleoyl-CoA, linolenoyl-CoA, and arachi-donoyl-CoA had no inhibitory effect. In conclusion, inhibition of acyl-CoA:1,2-diacylglycerol O-acyltransferase (EC 2.3.1.20) by eicosapentaenoic acid may be important for reduced synthesis and secretion of triacylglycerol from the liver.  相似文献   

9.
Changes in phospholipid metabolism in gastric mucosa caused by instillation of absolute ethanol (a cell-damaging agent) into the stomach of rats and the effects of pretreatment with 20% ethanol (a mild irritant) were investigated by using radioisotope-labeled fatty acids and glycerol. The labeled precursors were incorporated mainly into phosphatidylcholine and triacylglycerol, and also to lesser extents into phosphatidylethanolamine and phosphatidylinositol + phosphatidylserine. The instillation of absolute ethanol reduced the incorporation of fatty acids and glycerol into phospholipids within 15 min, indicating the inhibition by ethanol of de novo synthesis of phospholipids. Pretreatment with 20% ethanol caused the incorporation of fatty acids into phospholipids to be maintained after absolute ethanol instillation. These results suggest that the pretreatment with 20% ethanol may protect the cellular synthetic activity of phospholipids against damage by absolute ethanol. The incorporation of fatty acids into the free fatty acid fraction, monoacylglycerol and diacylglycerol was increased by absolute ethanol instillation, suggesting damage to the blood vessels of the gastric mucosa, and these changes were inhibited to some extent by the pretreatment with 20% ethanol.  相似文献   

10.
The metabolism of dietary lipids in the anterior midgut of Panstrongylus megistus during blood digestion was studied. Fifth instar nymphs were fed a blood meal containing 7.1 +/- 0.4 mg of lipids, consisting mainly of triacylglycerol (TAG), and completed the overall process of digestion in about 20 days. Lipolysis of TAG and pathways for diacylglycerol (DAG) biosynthesis in the midgut were investigated by feeding the insects with [9,10-3H]-oleic acid-labeled triolein. Lumenal [3H]-triacylglycerol was hydrolyzed, generating mainly fatty acids (FA) and glycerol and to lesser extent, DAG. Almost no radioactivity associated with monoacylglycerol was found at any time. In midgut tissue, labeled fatty acids were incorporated into phosphatidic acid, DAG and TAG, whereas no significantly labeled monoacylglycerol was observed. In addition, the activities of enzymes related to DAG metabolism were assayed in non-blood fed midgut homogenates and at different times after feeding on a blood meal. Significant changes in the activities of phosphatidate phosphohydrolase (EC 3.1.3.4) and triacylglycerol lipase (EC 3.1.1.3) were observed during blood digestion, suggesting that these enzymes are important in regulating intracellular DAG synthesis and mobilization in midgut cells. Finally, the histological changes of lipid stores observed in anterior midgut confirmed the active process of uptake and trafficking of lipids performed by the enterocytes during blood digestion.  相似文献   

11.
Glycerophospholipids are known to be hydrolyzed in the intestinal lumen into free fatty acids and lysophospholipids that are then absorbed by the intestinal epithelial cells. A monolayer of enterocyte-differentiated Caco-2 cell is often used to assess the intestinal bioavailability of nutrients. In this study, we examined how differentiated Caco-2 cells process lysoglycerolipids such as lysophosphatidylcholine (LPC). Our findings were twofold. (1) Caco-2 cells secreted both a lysophospholipase A-like enzyme and a glycerophosphocholine-phosphodiesterase enzyme into the apical, but not basolateral, lumen, suggesting that food-derived LPC is converted to a free fatty acid, sn-glycerol-3-phosphate, and choline through two sequential enzymatic reactions in humans. The release of the latter enzyme was differentiation-dependent. (2) Fatty acid-releasing activities toward exogenous fluorescent LPC, lysophosphatidic acid and monoacylglycerol were shown to be higher on the apical membranes of Caco-2 cells than on the basolateral membranes. These results suggest that human intestinal epithelial cells metabolize lysoglycerolipids by two distinct mechanisms involving secreted or apical-selective expression of metabolic enzymes.  相似文献   

12.
The monoglycerol acyltransferase (EC 2.3.1.22) (recommended name acylglycerol palmitoltransferase) activities from rat intestinal mucosa and suckling liver microsomes were compared in order to determine why substrate specificities differed in the two tissues. Suckling liver monoacylglycerol acyltransferase activity was highly specific for sn-2-mono-C18:1 glycerol and acylated rac-1-mono-C18:1 glycerol and 1- and 2-mono-C18:1 glycerol ethers poorly. In contrast, the substrate specificity of intestinal monoacylglycerol acyltransferase activity was broad. 1-Acyl- and 1- and 2-alkylglycerols were acylated at rates that were 45-78% of the rate observed with the preferred substrate sn-2-mono-C18:1 glycerol. Partial heat inactivation did not alter these relative specific activities, making it unlikely that intestinal microsomes contained a second acyltransferase capable of acylating the alternate substrates. The hypothesis that intestine and liver contain non-identical monoacylglycerol acyltransferase activities was further tested. Intestinal mucosa monoacylglycerol acyltransferase was much more thermolabile than the liver activity. Incubation with 50 microM diethylpyrocarbonate inactivated liver monoacylglycerol acyltransferase activity 84% but had little effect on the intestinal activity. Hydroxylamine completely reversed diethylpyrocarbonate inactivation, suggesting that critical histidine residues were more accessible in liver monoacylglycerol acyltransferase. 2,4,6-Trinitrobenzene sulfonic acid inactivated hepatic monoacylglycerol acyltransferase more than the intestinal activity, suggesting that critical lysine residues were more accessible. The intestinal and liver activities were also differently affected by acetone, detergents, MgCl2, phospholipids, and bovine serum albumin. Taken as a whole, the data strongly suggest that rat intestinal mucosa and suckling liver contain tissue-specific monoacylglycerol acyltransferase isoenzymes.  相似文献   

13.
Incubation of hepatocyte monolayers with oleate or palmitate (1.0 mM) for 2-48 h, increased (20 to 80%) the incorporation of [1,3-14C]glycerol and palmitate into triacyglycerol but not phosphatidylcholine. The effect of fatty acids on liver cell triacylglycerol formation correlated well (r = 0.990) with a simultaneous rise (2-4-fold) in phosphatidate phosphatase (EC 3.1.3.4) activity. Phosphatidate phosphatase activity and triacylglycerol biosynthesis are also increased (2-fold) after hepatocyte monolayers are incubated for 24 h with cyclic GMP in the absence of fatty acids. Fatty acid-dependent increases in liver cell triacylglycerol formation and phosphatidate phosphatase activity are not blocked by cycloheximide. Phosphatidylcholine biosynthesis was also elevated in homogenates of liver cells exposed (24-48 h) to 1.0 mM oleate when exogenous CDPcholine was added to the incubation mixture. Apparently, the phosphatidate phosphatase-dependent rise in diacylglycerols that occurs after fatty acid exposure is primarily shunted into triacylglycerols because liver cell CDPcholine content is not correspondingly increased, and high levels of diacylglycerol acyltransferase (EC 2.3.1.20) and fatty acyl-CoA derivatives are present.  相似文献   

14.
Acetone powders prepared from a 20,000g participate preparation from spinach leaf catalyzed several reactions involving monoacylglycerol and diacylglycerol. When these substrates were presented as Triton X-100-mixed micelles, diacylglycerol gave rise to free fatty acids, monoacylglycerol, triacylglycerols, and steryl esters, and in the presence of ethanol, small amounts of ethyl esters of fatty acid. Monoacylglycerol gave rise to free fatty acids and diacylglycerol, and in the presence of ethanol, large amounts of ethyl esters of fatty acid. In the presence of bovine serum albumin, the conversion of monoacylglycerol to free fatty acid was retarded. In the presence of bovine serum albumin, steryl ester was an important product from diacylglycerol. The system containing Triton X-100-mixed micelles and bovine serum albumin permitted analysis of reaction products which showed diacylglycerol to be an acyl donor in steryl ester biosynthesis. All reactions observed in the mixed micelle system were transacylation reactions involving various acceptors: dipalmitoylglycerol → monopalmitoylglycerol + palmitate; monopalmitoylglycerol → glycerol + palmitate; dipalmitoylglycerol + sterol → monopalmitoylglycerol + steryl palmitate; monopalmitoylglycerol + ethanol → ethyl palmitate + glycerol; monopalmitoylglycerol → dipalmitoylglycerol (+glycerol); dipalmitoylglycerol → tripalmitoylglycerol (+monopalmitoylglycerol).  相似文献   

15.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

16.
The respective roles of monoacylglycerol lipase and hormone-sensitive lipase in the sequential hydrolysis of adipose tissue triacylglycerols have been examined. An adipose tissue preparation, containing both lipases in approximately the same proportion as in the intact tissue, hydrolyzed emulsified tri- or dioleoylglycerol to fatty acids and glycerol, with little accumulation of di- or monooleoylglycerol. Selective removal of the monoacylglycerol lipase by immunoprecipitation markedly reduced the glycerol release. Isolated hormone-sensitive lipase hydrolyzed acylglycerols with a marked accumulation of monoacylglycerol in accordance with the positional specificity of this enzyme (Fredrikson, G. and Belfrage, P. (1983) J. Biol. Chem. 258, 14253-14256). Addition of increasing amounts of isolated monoacylglycerol lipase led to a corresponding increase in glycerol release, due to hydrolysis of the monoacylglycerols formed. The reaction proceeded to completion when the relative proportion of the two lipases was similar to that in the intact tissue. These findings indicate that hormone-sensitive lipase catalyzes the hydrolysis of triacylglycerol in the rate-limiting step of adipose tissues lipolysis, and of the resulting diacylglycerol, whereas the action of monoacylglycerol lipase is required in the final hydrolysis of the 2-monoacylglycerols produced.  相似文献   

17.
Male rats with thoracic duct cannulae were intubated with mustard-seed oil or the corresponding fatty acid methyl esters and the lymph was collected over 0-24 h. The chylomicron and very low density lipoprotein fractions were obtained by conventional ultracentrifugation. The triacylglycerols and glycerophospholipids were isolated and the positional distribution and molecular association of fatty acids were determined by stereospecific and chromatographic methods. The oleic, linoleic, and linolenic acids were recovered in the lymph in the proportion in which they occurred in the fat fed, while eicosenoic, erucic, and lignoceric acids were rejected to about the same extent by the two pathways of intestinal triacylglycerol biosynthesis. It is shown that the lymph triacylglycerols arising via the monoacylglycerol or the phosphatidic acid pathway possess structures that are closely similar to each other and to that of the original mustard-seed oil. It is proposed that this is a result of comparable fatty acid and positional specificity of the acyltransferases associated with the acylglycerol synthesis in the animal and plant tissues and the wide range of fatty acid chain lengths in the mustard-seed oil.  相似文献   

18.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

19.
Studies have been conducted on the uptake and metabolism of unesterified oleic acid and lipoprotein triacylglycerol by the perfused rat heart, and of oleic acid, free glycerol and lipoprotein triacylglycerol by rat cardiac myocytes. The perfused heart efficiently extracted and metabolized unesterified fatty acid and the fatty acid released during lipolysis of the recirculating triacylglycerol. The released glyceride glycerol, however, was largely accumulated in the perfusion media. Cardiac myocytes also extracted and rapidly metabolized unesterified fatty acid. As with the intact heart, free glycerol was poorly utilized by cardiac myocytes. Although the cells appeared to extract a small amount of available extracellular triacylglycerol presented as very low density lipoprotein, this was shown to be unmetabolized, suggesting adsorption rather than surface lipolysis and uptake of the released fatty acid. The data suggest that myocytes are unable to metabolize triacylglycerol fatty acids without prior lipolysis by extracellular (capillary endothelial) lipoprotein lipase.  相似文献   

20.
Postprandial secretion of insulin and glucose-dependent insulinotropic polypeptide (GIP) is differentially regulated by not only dietary carbohydrate but also fat. Recent studies have shown that the ingestion of diacylglycerol (DAG) results in lower postprandial insulin and GIP release than that of triacylglycerol (TAG), suggesting a possible mechanism for the antiobesity effect of DAG. The structural and metabolic characteristics of DAG are believed to be responsible for its beneficial effects. This study was designed to clarify the effect of 1-monoacylglycerol [oleic acid-rich (1-MO)], the characteristic metabolite of DAG, on postprandial insulin and GIP secretion, and the underlying mechanism. Dietary 1-MO dose dependently stimulated whole body fat utilization, and reduced high-fat diet-induced body weight gain and visceral fat accumulation in mice, both of which are consistent with the physiological effect of dietary DAG. Although glucose-stimulated insulin and GIP release was augmented by the addition of fat, coingestion of 1-MO reduced the postprandial hormone release in a dose-dependent manner. Either glucose or fatty acid transport into the everted intestinal sacs and enteroendocrine HuTu-80 cells was also reduced by the addition of 1-MO. Reduction of either glucose or fatty acid transport or the nutrient-stimulated GIP release by 1-MO was nullified when the intestine was pretreated with sodium-glucose cotransporter-1 (SGLT-1) or fatty acid translocase (FAT)/CD36 inhibitor. We conclude that dietary 1-MO attenuates postprandial GIP and insulin secretion by reducing the intestinal transport of the GIP secretagogues, which may be mediated via SGLT-1 and FAT/CD36. Reduced secretion of these anabolic hormones by 1-MO may be related to the antiobesity effect of DAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号