首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A trypsin-like proteinase (YPTP) and its endogenous inhibitor (ITYP) were isolated from the culture filtrate of the pathogenic bacterium Yersinia pseudotuberculosis, and their biological activities were studied. YPTP was found to be highly toxic for random-bred white mice. Under in vitro conditions the proteolytic enzyme destroyed protective proteins of the immune system of the animals--IgG, IgA, and proteins of the complement system (CIq, C3, and C5)--and, consequently, was a pathogenetic factor in yersinioses. The inhibitor ITYP was shown to manifest antibacterial activity against virulent forms of Yersinia pseudotuberculosis, Escherichia coli, and Salmonella typhimurium. The ITYP preparation was harmless and nontoxic.  相似文献   

2.
The functional activity of polymorphonuclear leukocytes (PNL) of the peripheral blood of rabbits infected orally with Y. pseudotuberculosis was studied. By day 5 of Y. pseudotuberculosis infection the pronounced stimulation of the myeloperoxidase system with the appearance of respiratory explosion was registered with the use of the nitro blue tetrazolium (NBT) test. The NBT-positive leukocyte index was found to increase 3.32-fold in comparison with the initial data. According to the results of the liposomal cationic test, the stimulation of the system of nonenzymatic cationic PNL proteins was revealed. By day 12 after infection the median cytochemical coefficient reached 2.035 +/- 0.005 conventional units, while in intact animals it was equal to 0.995 +/- 0.002 units. By day 20 a repeated, not so great, increase in the amount of NBT-positive PNL and in the content of cationic proteins in them was observed. The data thus obtained are indicative of the faintly pronounced secretory degranulation of PNL, which was probably one of the causes responsible for disturbances in the process of the digestion of Y. pseudotuberculosis by leukocytes, while their capacity for ingestion was retained.  相似文献   

3.
Four genes, fagA, B, C and D, encoding products with 32-47% identity to proteins involved in bacterial iron uptake systems, were identified immediately downstream of the Corynebacterium pseudotuberculosis phospholipase D gene. beta-Galactosidase assays on a C. pseudotuberculosis strain carrying a fagA-lacZ fusion indicated that the putative fagABC operon was poorly expressed in iron-rich media. However, similar experiments in iron-limited media resulted in an approximately three-fold increase in beta-galactosidase activity, suggesting that this operon is regulated by iron in vitro. Although no defect in iron utilization could be determined for a C. pseudotuberculosis fagB(C) mutant in vitro, this mutant showed reduced virulence compared to wild-type in a goat model of caseous lymphadenitis. Thus, expression of the fag genes in the host appears to contribute to virulence.  相似文献   

4.
Yersinia spp. use a type 3 secretion system (T3SS) to directly inject six proteins into macrophages, and any impairment of this process results in a profound reduction in virulence. We previously showed that the exoribonuclease polynucleotide phosphorylase (PNPase) was required for optimal T3SS functioning in Yersinia pseudotuberculosis and Yersinia pestis. Here we report that Y. pseudotuberculosis cells with reduced RNase E activity are likewise impaired in T3SS functioning and that phenotypically they resemble Delta pnp cells. RNase E does not affect expression levels of the T3SS substrates but instead, like PNPase, regulates a terminal event in the secretion pathway. This similarity, together with the fact that RNase E and PNPase can be readily copurified from Y. pseudotuberculosis cell extracts, suggests that these two RNases regulate T3SS activity through a common mechanism. This is the first report that RNase E activity impacts the T3SS as well as playing a more general role in infectivity.  相似文献   

5.
On the basis of Yersinia pseudotuberculosis strain YPIII the isogenic variants containing the different combinations of 47 Md plasmids from Yersinia pestis or Yersinia pseudotuberculosis cells with the 6 Md pYP plasmid from Yersinia pestis EV (intact or having impaired the pla gene determining the synthesis of plasmocoagulase). The degradation of the secreted proteins encoded by the 47 Md plasmids of Yersinia pestis and Yersinia pseudotuberculosis in the cells harbouring the 6Md pYP plasmid has been registered. Yersinia pseudotuberculosis strain YPIII carrying its own 47Md and pYP plasmids also contained no YOP1 protein, in contract to the parent strain. The damage of the pla gene eliminated the destructive effect on the outer membrane proteins. Imposition of the 47Md and 6Md plasmids from Yersinia pestis in Yersinia pseudotuberculosis cells may be used for obtaining and study of the physiological role of low molecular mass proteins resulting from proteolysis of proteins encoded by the 47Md virulence plasmid of Yersinia.  相似文献   

6.
The influence of culture conditions and plasmids on immunoglobulin (Ig)-binding activity of two isogenic strains of Yersinia pseudotuberculosis (plasmid-free strain 48(-)82(-) and strain 48(+)82(+) bearing plasmids pYV48 and pVM82) was studied. The highest activity was observed in the bacteria grown on glucose-containing liquid medium in the stationary growth phase. The Ig-binding activity of the bacteria cultured on the liquid medium at pH 6.0 was about 1.5-fold higher than that of the bacteria grown at pH 7.2. Expression of the Ig-binding proteins (IBPs) was most influenced by temperature of cultivation. The IBP biosynthesis was activated in the bacteria grown at 4 degrees C and markedly decreased in those grown at 37 degrees C. The Ig-binding activity of lysates from the bacteria was caused by proteins with molecular weights of 7-20 kD. The activities of the plasmid-free and plasmid-bearing Y. pseudotuberculosis strains (48(-)82(-) and 48(+)82(+), respectively) were analyzed, and the plasmids were shown to have no effect on the IBP expression and biosynthesis, which seemed to be determined by chromosomal genes.  相似文献   

7.
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.  相似文献   

8.
The ability of released proteins (Yops) and surface lipopolysaccharides (LPS) from the wild-type strain Yersinia enterocolitica 8081-L2, serotype 0:8 to influence the complement activity was determined. Yops and LPS from wild-type and mutant strains showed different ability to affect the classical pathway (CP) functional complement activity in vitro. The serum CP activity was inhibited during the infection induced with six Y. enterocolitica and three Y. pseudotuberculosis strains in rabbits. The changed complement activity might be of importance for the course of Yersinia infections.  相似文献   

9.
One virulence strategy used by the opportunistic pathogen Pseudomonas aeruginosa is to target toxic proteins into eukaryotic cells by a type III secretion mechanism. Two of these proteins, ExoS and ExoT, show 75% homology on amino acid level. However, compared with ExoS, ExoT exhibits highly reduced ADP-ribosylating activity and the role of ExoT in pathogenesis is poorly understood. To study the biological effect of ExoT, we used a strategy by which ExoT was delivered into host cells by the heterologous type III secretion system of Yersinia pseudotuberculosis . ExoT was found to induce a rounded cell morphology and to mediate disruption of actin microfilaments, similar to that induced by an ADP-ribosylation defective ExoS (E381A) and the related cytotoxin YopE of Y. pseudotuberculosis . In contrast to ExoS, ExoT had no major effect on cell viability and did not modify or inactivate Ras by ADP-ribosylation in vivo . However, similar to ExoS and YopE, ExoT exhibited GAP (GTPase activating protein) activity on RhoA GTPase in vitro . Interestingly, ExoT(R149K), deficient for GAP activity, still caused a morphological change of HeLa cells. Based on our findings, we suggest that the ADP-ribosylating activity of ExoT target another, as yet unidentified, host protein that is distinct from Ras.  相似文献   

10.
The capacity of Y. pseudotuberculosis to express serovar specific polypeptides with different specificity of antigenic determinants was proved with the use of monoclonal antibodies (McAb). For the first time Y. pseudotuberculosis O antigens were found to have heat stable protein components carrying linear epitopes complementary to serovar specific MaAb and ensuring the serological specificity of the infective agent. The possibility of improving intraspecific classification of Y. pseudotuberculosis and their differentiation from other pathogenic Yersinia on the basis of the capacity of these bacteria for synthesizing species and serovar specific proteins is substantiated.  相似文献   

11.
Viboud GI  Bliska JB 《The EMBO journal》2001,20(19):5373-5382
The bacterial pathogen Yersinia pseudotuberculosis uses type III secretion machinery to translocate Yop effector proteins through host cell plasma membranes. A current model suggests that a type III translocation channel is inserted into the plasma membrane, and if Yops are not present to fill the channel, the channel will form a pore. We examined the possibility that Yops act within the host cell to prevent pore formation. Yop- mutants of Y.pseudotuberculosis were assayed for pore-forming activity in HeLa cells. A YopE- mutant exhibited high levels of pore-forming activity. The GTPase-downregulating function of YopE was required to prevent pore formation. YopE+ bacteria had increased pore-forming activity when HeLa cells expressed activated Rho GTPases. Pore formation by YopE- bacteria required actin polymerization. F-actin was concentrated at sites of contact between HeLa cells and YopE- bacteria. The data suggest that localized actin polymerization, triggered by the type III machinery, results in pore formation in cells infected with YopE- bacteria. Thus, translocated YopE inhibits actin polymerization to prevent membane damage to cells infected with wild-type bacteria.  相似文献   

12.
13.
Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-beta-1,6-N-acetyl-D-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved beta-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.  相似文献   

14.
Lethal doses of virulent pseudotuberculosis bacilli and antipseudotuberculosis sera of different specificity were injected to albino mice simultaneously. A high neutralizing activity of antibodies against pseudotuberculosis intoxication was demonstrated. The type-specific antibodies proved to protect the mice from the toxins of the homologous types of the microbe only. Group antibodies of plaque antiserum and serum procured from the pseudoteburculosis convalescent produced a cross antitoxic action. The antiinfectious effect from the antibody administration was weak. Apparently in pseudotuberculosis the antibodies were the principal factor of the toxin neutralization and were of auxiliary significance in the protection from the developing infection. Neutralization of pseudotuberculosis toxins with plague antiserum served as an additional confirmation of cross immunity between plague and pseudotuberculosis.  相似文献   

15.
A variety of pathogenic bacteria use type III secretion pathways to translocate virulence proteins into host eukaryotic cells. YopE is an important virulence factor that is translocated into mammalian cells via a plasmid-encoded type III system in Yersinia spp. YopE action in mammalian cells promotes the disruption of actin filaments, cell rounding and blockage of phagocytosis. It was reported recently that two proteins with sequence similarity to YopE, SptP of Salmonella typhimurium and ExoS of Pseudomonas aeruginosa, function as GTPase-activating proteins (GAPs) for Rho GTPases. YopE contains an 'arginine finger' motif that is present in SptP, ExoS and other Rho GAPs and is essential for catalysis by this class of proteins. We show here that a GST-YopE fusion protein stimulated in vitro GTP hydrolysis by the Rho family members Cdc42, RhoA and Rac1, but not by Ras. Conversion of the essential arginine in the arginine finger motif to alanine (R144A) eliminated the in vitro GAP activity of GST-YopE. Infection assays carried out with a Yersinia pseudotuberculosis strain producing YopER144A demonstrated that GAP function was essential for the disruption of actin filaments, cell rounding and inhibition of phagocytosis by YopE in HeLa cells. Furthermore, the GAP function of YopE was important for Y. pseudotuberculosis pathogenesis in a mouse infection assay. Transfection of HeLa cells with a vector that produces a constitutively active form of RhoA (RhoA-V14) prevented the disruption of actin filaments and cell rounding by YopE. Production of an activated form of Rac1 (Rac1-V12), but not RhoA-V14, in HeLa cells interfered with YopE antiphagocytic activity. These results demonstrate that YopE functions as a RhoGAP to downregulate multiple Rho GTPases, leading to the disruption of actin filaments and inhibition of bacterial uptake into host cells.  相似文献   

16.
Corynebacterium pseudotuberculosis is the etiological agent of the sheep disease caseous lymphadenitis. We have developed a promoter reporter system for this organism based on expression of the green fluorescent protein (gfp) gene from Aequorea victoria. A promoterless vector, pSM20, containing the gfp gene was constructed, and promoters were inserted upstream of the gfp gene. Upon transformation into C. pseudotuberculosis, fluorescence could be visualised by fluorescence microscopy, and relative promoter strength measured by flow cytometry. The usefulness of this system for measuring changes in gene expression was demonstrated by measuring fluorescence levels of heat shocked C. pseudotuberculosis carrying a dnaK promoter construct. Replication of C. pseudotuberculosis within J774 macrophages could be monitored by fluorescence microscopy. The establishment of the system allowed the use of differential fluorescence to identify genes that showed up-regulation following macrophage infection. Genes coding for a non-ribosomal peptide synthetase and the beta chain of a propionyl CoA carboxylase were identified as possessing promoters that demonstrated enhanced activity following macrophage infection by C. pseudotuberculosis.  相似文献   

17.
Abstract Yersinia enterocolitica of serotypes O:3, O:8, O:9 and O:5,27 and Yersinia pseudotuberculosis of serotypes I and III release plasmid-encoded proteins into calcium-deficient medium. Mouse monoclonal antibodies were elicited against plasmid-encoded released proteins of Y. enterocolitica of serotype O:9. As shown by immunoblot analysis the monoclonal antibody Mab9–200 recognized the 46-kDa protein of Y. enterocolitica of serotypes O:3, O:9 and O:5,27, the 58-kDa protein of Y. enterocolitica of serotype O:8 and the 67-kDa protein of Y. pseudotuberculosis of serotypes I and III. Mab9–15 reacted with the 36-kDa protein of Y. enterocolitica of serotypes O:9, O:3 and O:8, and the 34-kd protein of Y. enterocolitica of serotype O:5,27 and Y. pseudotuberculosis of serotypes I and III. The 25-kDa proteins of Y. enterocolitica of serotypes O:3, O:9, O:8 and O:5,27, but not those of Y. pseudotuberculosis were recognized by the monoclonal antibody Mab-128. This species-specific recognition of epitopes could not be achieved by mouse polyclonal antibodies.  相似文献   

18.
The OmpH proteins of enteric bacteria are recently described, small (16 kDa), cationic outer membrane proteins. Because a Yersinia pseudotuberculosis cell envelope protein of this size has been found to cross-react serologically with the human histocompatibility antigen HLA-B27 (B*2701), the sequence of Y. pseudotuberculosis OmpH was determined by sequencing the gene region which encodes mature OmpH. A protein consisting of 143 amino acid residues was found. It was 96% homologous with the OmpH of Y. enterocolitica and 62% homologous with that of Escherichia coli. Two separate OmpH regions had sequence similarity with B*2701; they were identical in both Yersinia species.  相似文献   

19.
Numerous microbial pathogens modulate or interfere with cell death pathways in cultured cells. However, the precise role of host cell death during in vivo infection remains poorly understood. Macrophages infected by pathogenic species of Yersinia typically undergo an apoptotic cell death. This is due to the activity of a Type III secreted effector protein, designated YopJ in Y. pseudotuberculosis and Y. pestis, and YopP in the closely related Y. enterocolitica. It has recently been reported that Y. enterocolitica YopP shows intrinsically greater capacity for being secreted than Y. pestis YopJ, and that this correlates with enhanced cytotoxicity observed for high virulence serotypes of Y. enterocolitica. The enzymatic activity and secretory capacity of YopP from different Y. enterocolitica serotypes have been shown to be variable. However, the underlying basis for differential secretion of YopJ/YopP, and whether reduced secretion of YopJ by Y. pestis plays a role in pathogenesis during in vivo infection, is not currently known. It has also been reported that similar to macrophages, Y. enterocolitica infection of dendritic cells leads to YopP-dependent cell death. We demonstrate here that in contrast to Y. enterocolitica, Y. pseudotuberculosis infection of bone marrow-derived dendritic cells does not lead to increased cell death. However, death of Y. pseudotuberculosis-infected dendritic cells is enhanced by ectopic expression of YopP in place of YopJ. We further show that polymorphisms at the N-terminus of the YopP/YopJ proteins are responsible for their differential secretion, translocation, and consequent cytotoxicity. Mutation of two amino acids in YopJ markedly enhanced both translocation and cytotoxicity. Surprisingly, expression of YopP or a hypersecreted mutant of YopJ in Y. pseudotuberculosis resulted in its attenuation in oral mouse infection. Complete absence of YopJ also resulted in attenuation of virulence, in accordance with previous observations. These findings suggest that control of cytotoxicity is an important virulence property for Y. pseudotuberculosis, and that intermediate levels of YopJ-mediated cytotoxicity are necessary for maximal systemic virulence of this bacterial pathogen.  相似文献   

20.
The outer membranes of gram-negative bacteria are considered to be of importance in host-bacteria interaction, in protective immunity, and occasionally in subclassification within a species. In this study, the outer membranes of several strains of Yersinia enterocolitica and Y. pseudotuberculosis were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). It was found that the appearance of the major proteins depended on the temperature at which they were solubilized in SDS. A protein was identified with the use of two-dimensional gels and preparative SDS-PAGE, which was equivalent to the "heat-modifiable protein" (protein II) of other Enterobacteriaceae species. A monoclonal antibody, 4G1, was generated against an isolated preparation of this Y. enterocolitica protein. This antibody was tested with whole cell bacterial antigens of 46 individual bacterial strains. The reactive strains included only Y. enterocolitica and Y. pseudotuberculosis. In addition, the reactivity of the 4G1 monoclonal antibody preparation could be absorbed only with Y. enterocolitica and Y. pseudotuberculosis, and not with other strains of bacteria. The reactivity of this 4G1 monoclonal antibody was also tested by the Western Blot technique. Six individual strains were tested: a Y. enterocolitica serotype 0:3, a Y. enterocolitica serotype 0:9, an Escherichia coli, a Salmonella typhimurium, a Shigella flexneri, and a Klebsiella pneumoniae. The 4G1 antibody reacted with only the proteins of the two Y. enterocolitica strains. In conclusion, the equivalent of the heat-modifiable protein was present in Y. enterocolitica and Y. pseudotuberculosis. Moreover, this protein also carried a species-specific antigenic determinant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号