首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies.  相似文献   

2.
The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis.  相似文献   

3.
Kinetic analysis of walking requires joint kinematics and ground reaction force (GRF) measurement, which are typically obtained from a force plate. GRF is difficult to measure in certain cases such as slope walking, stair climbing, and track running. Nevertheless, estimating GRF continues to be of great interest for simulating human walking. The purpose of the study was to develop reaction force models placed on the sole of the foot to estimate full GRF when only joint kinematics are provided (Type-I), and to estimate ground contact shear forces when both joint kinematics and foot pressure are provided (Type-II and Type-II-val). The GRF estimation models were attached to a commercial full body skeletal model using the AnyBody Modeling System, which has an inverse dynamics-based optimization solver. The anterior–posterior shear force and medial–lateral shear force could be estimated with approximate accuracies of 6% BW and 2% BW in all three methods, respectively. Vertical force could be estimated in the Type-I model with an accuracy of 13.75% BW. The accuracy of the force estimation was the highest during the mid-single-stance period with an average RMS for errors of 3.10% BW, 1.48% BW, and 7.48% BW for anterior–posterior force, medial–lateral force, and vertical force, respectively. The proposed GRF estimation models could predict full and partial GRF with high accuracy. The design of the contact elements of the proposed model should make it applicable to various activities where installation of a force measurement system is difficult, including track running and treadmill walking.  相似文献   

4.
Large knee adduction moments during gait have been implicated as a mechanical factor related to the progression and severity of tibiofemoral osteoarthritis and it has been proposed that these moments increase the load on the medial compartment of the knee joint. However, this mechanism cannot be validated without taking into account the internal forces and moments generated by the muscles and ligaments, which cannot be easily measured. Previous musculoskeletal models suggest that the medial compartment of the tibiofemoral joint bears the majority of the tibiofemoral load, with the lateral compartment unloaded at times during stance. Yet these models did not utilise explicitly measured muscle activation patterns and measurements from an instrumented prosthesis which do not portray lateral compartment unloading. This paper utilised an EMG-driven model to estimate muscle forces and knee joint contact forces during healthy gait. Results indicate that while the medial compartment does bear the majority of the load during stance, muscles provide sufficient stability to counter the tendency of the external adduction moment to unload the lateral compartment. This stability was predominantly provided by the quadriceps, hamstrings, and gastrocnemii muscles, although the contribution from the tensor fascia latae was also significant. Lateral compartment unloading was not predicted by the EMG-driven model, suggesting that muscle activity patterns provide useful input to estimate muscle and joint contact forces.  相似文献   

5.
In the prediction of bone remodelling processes after total hip replacement (THR), modelling of the subject-specific geometry is now state-of-the-art. In this study, we demonstrate that inclusion of subject-specific loading conditions drastically influences the calculated stress distribution, and hence influences the correlation between calculated stress distributions and changes in bone mineral density (BMD) after THR.For two patients who received cementless THR, personalized finite element (FE) models of the proximal femur were generated representing the pre- and post-operative geometry. FE analyses were performed by imposing subject-specific three-dimensional hip joint contact forces as well as muscle forces calculated based on gait analysis data. Average values of the von Mises stress were calculated for relevant zones of the proximal femur. Subsequently, the load cases were interchanged and the effect on the stress distribution was evaluated. Finally, the subject-specific stress distribution was correlated to the changes in BMD at 3 and 6 months after THR.We found subject-specific differences in the stress distribution induced by specific loading conditions, as interchanging of the loading also interchanged the patterns of the stress distribution. The correlation between the calculated stress distribution and the changes in BMD were affected by the two-dimensional nature of the BMD measurement.Our results confirm the hypothesis that inclusion of subject-specific hip contact forces and muscle forces drastically influences the stress distribution in the proximal femur. In addition to patient-specific geometry, inclusion of patient-specific loading is, therefore, essential to obtain accurate input for the analysis of stress distribution after THR.  相似文献   

6.
Gender differences in the incidence of symptomatic hip osteoarthritis (OA), changes in hip cartilage volume and hip joint space and rates hip arthroplasty of older people are reported in the literature. As the rate of progression of OA is in part mechanically modulated it is possible that this gender bias may be related to inherent differences (if they exist) in walking mechanics between older males and females. The purpose of this study was to examine potential mechanisms for gender differences in hip joint mechanics during walking by testing the hypotheses that females would exhibit higher hip flexion, adduction and internal rotation moments but not significantly greater normalized ground reaction forces (GRFs). Forty-two healthy subjects (21 male, 21 female), ages 50–79 yr were recruited for gait analysis. In support of the hypotheses, greater external hip adduction and internal rotation along with hip extension moments were found for females compared to males after normalizing for body size for all self-selected walking speeds. Differences in walking style (kinematics) were the main determinants in the joint kinetic differences as no differences in the normalized GRFs were found. As external joint moments are surrogate measures of the joint contact forces, the results of this study suggest the hip joint stress for the female population is higher compared to male population. This is in favor of a hypothesis that the increased joint contact stress in a female population could contribute to a greater joint degeneration at the hip in females as compared with males.  相似文献   

7.
Skeletal forces are fundamental information in predicting the risk of bone fracture. The neuromotor control system can drive muscle forces with various task- and health-dependent strategies but current modelling techniques provide a single optimal solution of the muscle load sharing problem. The aim of the present work was to study the variability of the hip load magnitude due to sub-optimal neuromotor control strategies using a subject-specific musculoskeletal model. The model was generated from computed tomography (CT) and dissection data from a single cadaver. Gait kinematics, ground forces and electromyographic (EMG) signals were recorded on a body-matched volunteer. Model results were validated by comparing the traditional optimisation solution with the published hip load measurements and the recorded EMG signals. The solution space of the instantaneous equilibrium problem during the first hip load peak resulted in 10(5) dynamically equivalent configurations of the neuromotor control. The hip load magnitude was computed and expressed in multiples of the body weight (BW). Sensitivity of the hip load boundaries to the uncertainty on the muscle tetanic stress (TMS) was also addressed. The optimal neuromotor control induced a hip load magnitude of 3.3 BW. Sub-optimal neuromotor controls induced a hip load magnitude up to 8.93 BW. Reducing TMS from the maximum to the minimum the lower boundary of the hip load magnitude varied moderately whereas the upper boundary varied considerably from 4.26 to 8.93 BW. Further studies are necessary to assess how far the neuromotor control can degrade from the optimal activation pattern and to understand which sub-optimal controls are clinically plausible. However we can consider the possibility that sub-optimal activations of the muscular system play a role in spontaneous fractures not associated with falls.  相似文献   

8.
To facilitate stable walking, humans must generate appropriate motor patterns and effective corrective responses to perturbations. Yet most EMG analyses do not address the continuous nature of muscle activation dynamics over multiple strides. We compared muscle activation dynamics in young and older adults by defining a multivariate state space for muscle activity. Eighteen healthy older and 17 younger adults walked on a treadmill for 2 trials of 5 min each at each of 5 controlled speeds (80–120% of preferred). EMG linear envelopes of v. lateralis, b. femoris, gastrocnemius, and t. anterior of the left leg were obtained. Interstride variability, local dynamic stability (divergence exponents), and orbital stability (maximum Floquet multipliers; FM) were calculated. Both age groups exhibited similar preferred walking speeds (p=0.86). Amplitudes and variability of individual EMG linear envelopes increased with speed (p<0.01) in all muscles but gastrocnemius. Older adults also exhibited greater variability in b. femoris and t. anterior (p<0.004). When comparing continuous multivariate EMG dynamics, older adults demonstrated greater local and orbital instability of their EMG patterns (p<0.01). We also compared how muscle activation dynamics were manifested in kinematics. Local divergence exponents were strongly correlated between kinematics and EMG, independent of age and walking speed, while variability and max FM were not. These changes in EMG dynamics may be related to increased neuromotor noise associated with aging and may indicate subtle deterioration of gait function that could lead to future functional declines.  相似文献   

9.
Although numerous studies have investigated the effects of load carriage on gait mechanics, most have been conducted on active military men. It remains unknown whether men and women adapt differently to carrying load. The purpose of this study was to compare the effects of load carriage on gait mechanics, muscle activation patterns, and metabolic cost between men and women walking at their preferred, unloaded walking speed. We measured whole body motion, ground reaction forces, muscle activity, and metabolic cost from 17 men and 12 women. Subjects completed four walking trials on an instrumented treadmill, each five minutes in duration, while carrying no load or an additional 10%, 20%, or 30% of body weight. Women were shorter (p<0.01), had lower body mass (p=0.01), and had lower fat-free mass (p=0.02) compared to men. No significant differences between men and women were observed for any measured gait parameter or muscle activation pattern. As load increased, so did net metabolic cost, the duration of stance phase, peak stance phase hip, knee, and ankle flexion angles, and all peak joint extension moments. The increase in the peak vertical ground reaction force was less than the carried load (e.g. ground force increased approximately 6% with each 10% increase in load). Integrated muscle activity of the soleus, medial gastrocnemius, lateral hamstrings, vastus medialis, vastus lateralis, and rectus femoris increased with load. We conclude that, despite differences in anthropometry, men and women adopt similar gait adaptations when carrying load, adjusted as a percentage of body weight.  相似文献   

10.
Turning is a common locomotor task essential to daily activity; however, very little is known about the forces and moments responsible for the kinematic adaptations occurring relative to straight-line gait in typically developing children. Thus, the aims of this study were to analyse ground reaction forces (GRFs), ground reaction free vertical torque (TZ), and the lower-limb joint kinetics of 90° outside (step) and inside (spin) limb turns. Step, spin, and straight walking trials from fifty-four typically developing children were analysed. All children were fit with the Plug-in Gait and Oxford Foot Model marker sets while walking over force plates embedded in the walkway. Net internal joint moments and power were computed via a standard inverse dynamics approach. All dependent variables were statistically analysed over the entire curves using the mean difference 95% bootstrap confidence band approach. GRFs were directed medially for step turns and laterally for spin turns during the turning phase. Directions were reversed and magnitudes decreased during the approach phase. Step turns showed reduced ankle power generation, while spin turns showed large TZ. Both strategies required large knee and hip coronal and transverse plane moments during swing. These kinetic differences highlight adaptations required to maintain stability and reorient the body towards the new walking direction during turning. From a clinical perspective, turning gait may better reveal weaknesses and motor control deficits than straight walking in pathological populations, such as children with cerebral palsy, and could potentially be implemented in standard gait analysis sessions.  相似文献   

11.
The problem of modelling stresses incurred at the finger joints is critical to the design of durable joint replacements in the hand. The goal of this study was to characterise the forces and stresses at the finger and thumb joints occurring during activities such as typing at a keyboard, playing piano, gripping a pen, carrying a weight and opening a jar. The metacarpal and proximal phalanx were modelled using a COMSOL-based finite element analysis. Analysis of these activities indicates that joint forces in excess of 100 N may be common at the metacarpophalangeal joint (MCP) due to carrying objects such as groceries or while opening jars. The model predicted that stresses in excess of 2 MPa, similar to stresses at the hip, occur at the MCP with the properties of cancellous bone playing a significant role in the magnitude and distribution of stress.  相似文献   

12.
Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results indicated that ignoring intervertebral translational DOFs had in general low to moderate impact on model predictions. Compared with the OFE model, the SFE and HFE models predicted generally larger L4–L5 and L5–S1 compression and shear loads, especially for tasks with greater trunk angles; differences reached ~15% for the L4–L5 compression, ~36% for the L4–L5 shear and ~18% for the L5–S1 shear loads. Such differences increased, as location of the hinge joints in the HFE model moved from the mid-disc height to either the lower or upper endplates. Stability analyses of these models for some select activities revealed small changes in predicted margin of stability. Model studies dealing exclusively with the estimation of spinal loads and/or stability may, hence with small loss of accuracy, neglect intervertebral translational DOFs at smaller trunk flexion angles for the sake of computational simplicity.  相似文献   

13.
The equine metacarpophalangeal (MCP) joint is frequently injured, especially by racehorses in training. Most injuries result from repetitive loading of the subchondral bone and articular cartilage rather than from acute events. The likelihood of injury is multi-factorial but the magnitude of mechanical loading and the number of loading cycles are believed to play an important role. Therefore, an important step in understanding injury is to determine the distribution of load across the articular surface during normal locomotion. A subject-specific finite-element model of the MCP joint was developed (including deformable cartilage, elastic ligaments, muscle forces and rigid representations of bone), evaluated against measurements obtained from cadaver experiments, and then loaded using data from gait experiments. The sensitivity of the model to force inputs, cartilage stiffness, and cartilage geometry was studied. The FE model predicted MCP joint torque and sesamoid bone flexion angles within 5% of experimental measurements. Muscle–tendon forces, joint loads and cartilage stresses all increased as locomotion speed increased from walking to trotting and finally cantering. Perturbations to muscle–tendon forces resulted in small changes in articular cartilage stresses, whereas variations in joint torque, cartilage geometry and stiffness produced much larger effects. Non-subject-specific cartilage geometry changed the magnitude and distribution of pressure and the von Mises stress markedly. The mean and peak cartilage stresses generally increased with an increase in cartilage stiffness. Areas of peak stress correlated qualitatively with sites of common injury, suggesting that further modelling work may elucidate the types of loading that precede joint injury and may assist in the development of techniques for injury mitigation.  相似文献   

14.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   

15.
16.
As humans increase walking speed, there are concurrent transitions in the frequency ratio between arm and leg movements from 2:1 to 1:1 and in the phase relationship between the movements of the two arms from in-phase to out-of-phase. Superharmonic resonance of a pendulum with monofrequency excitation had been proposed as a potential model for this phenomenon. In this study, an alternative model of paired pendulums with multiple-frequency excitations is explored. It was predicted that the occurrence of the concurrent transitions was a function of (1) changes in the magnitude ratio of shoulder accelerations at step and stride frequencies that accompany changes in walking speed and (2) proximity of these frequencies to the natural resonance frequencies of the arms modeled as a pair of passive pendulums. Model predictions were compared with data collected from 14 healthy young subjects who were instructed to walk on a treadmill. Walking speeds were manipulated between 0.18 and 1.52 m/s in steps of 0.22 m/s. Kinematic data for the arms and shoulders were collected using a 3D motion analysis system, and simulations were conducted in which the movements of a double-pendulum system excited by the accelerations at the suspension point were analyzed to determine the extent to which the arms acted as passive pendulums. It was confirmed that the acceleration waveforms at the shoulder are composed primarily of stride and step frequency components. Between the shoulders, the stride frequency components were out-of-phase, while the step frequency components were in-phase. The amplitude ratio of the acceleration waveform components at the step and stride frequencies changed as a function of walking speed and were associated with the occurrence of the transitions. Simulation results using these summed components as excitatory inputs to the double-pendulum system were in agreement with actual transitions in 80% of the cases. The potential role of state-dependent active muscle contraction at shoulder joints on the occurrence of the transitions was discussed. Due to the tendency of arm movements to stay in the vicinity of their primary resonance frequency, these active muscle forces were hypothesized to function as escapements that created limit cycle oscillations at the shoulders resonant frequency.  相似文献   

17.
Comparison of biometrical models for joint linkage association mapping   总被引:1,自引:0,他引:1  
Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.  相似文献   

18.
Estimating sexual dimorphism in skeletal and dental features of fossil species is difficult when the sex of individuals cannot be reliably determined. Several different methods of estimating dimorphism in this situation have been suggested: extrapolation from coefficients of variation, division of a sample about the mean or median into two subsamples which are then treated as males and females, and finite mixture analysis (specifically for estimating the maximum dimorphism that could be present in a unimodal distribution). The accuracy of none of these methods has been thoroughly investigated and compared in a controlled manner. Such analysis is necessary because the accuracy of all methods is potentially affected by fluctuations in either sample size, sex ratio, or the magnitude of intrasexual variability. Computer modeling experiments show that the mean method is the least sensitive to fluctuations in these parameters and generally provides the best estimates of dimorphism. However, no method can accurately estimate low to moderate levels of dimorphism, particularly if intrasexual variability is high and sex ratios are skewed. © 1994 Wiley-Liss, Inc.  相似文献   

19.
The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation–supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction.  相似文献   

20.
Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model?s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号