首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The primary structure of the newly sequence analysed placental tissue protein 13 (PP13) was highly homologous to several members of the beta-galactoside-binding S-type lectin (galectin) family. By homology modelling, the three-dimensional structure of PP13 was built based on high-resolution crystal structures of homologues and also their characteristic 'jellyroll' fold was found in the case of PP13. Our model has been deposited in the Brookhaven Protein Data Bank. By multiple sequence alignment and structure-based secondary structure prediction, we underlined the structural similarity of PP13 with its homologues. The secondary structure of PP13 was identical with 'proto-type' galectins consisting of a five- and a six-stranded beta-sheet, joined by two alpha-helices, and galectins' highly conserved carbohydrate-recognition domain (CRD) was also present in PP13. Of the eight consensus residues in the CRD, four identical and three conservatively substituted were shared by PP13. By docking simulations PP13 possessed sugar-binding activity with highest affinity to N-acetyllactosamine and lactose typical of most galectins. All ligands were docked into the putative CRD of PP13. Based on several lines of evidence discussed in this paper demonstrating that PP13 is a novel galectin, PP13 was also designated galectin-13. These computational results provide some new insights into the possible role and importance of PP13 in various processes of the human body and can be of help in the initial steps of further functional research.  相似文献   

2.
The beta-galactoside-binding protein galectin-3 has pleiotropic biological functions and has been implicated in cell growth, differentiation, adhesion, RNA processing, apoptosis, and malignant transformation. Galectin-3 may be phosphorylated at N-terminal Ser(6), but the role of phosphorylation in determining interactions of this endogenous lectin with its ligands remains to be elucidated. We therefore studied the effect of phosphorylation on binding of galectin-3 to two of its reported ligands, laminin and purified colon cancer mucin. Human recombinant galectin-3 was phosphorylated in vitro by casein kinase I, and separated from the native species by isoelectric focusing for use in solid phase binding assays. Non-phosphorylated galectin-3 bound to laminin and asialomucin in a dose-dependent manner with half-maximal binding at 1.5 microg/ml. Phosphorylation reduced saturation binding to each ligand by >85%. Ligand binding could be fully restored by dephosphorylation with protein phosphatase type 1. Mutation of galectin-3 at Ser(6) (Ser to Glu) did not alter galectin ligand binding. Metabolic labeling or separation by isoelectric focusing confirmed the presence of phosphorylated galectin-3 species in vivo in the cytosol of human colon cancer cells from which ligand mucin was purified. Phosphorylation significantly reduces the interaction of galectin-3 with its ligands. The process by which phosphorylation modulates protein-carbohydrate interactions has important implications for understanding the biological functions of this protein, and may serve as an "on/off" switch for its sugar binding capabilities.  相似文献   

3.
Sheng KH  Yao YC  Chuang SS  Wu H  Wu TF 《Proteomics》2006,6(3):1058-1065
To better understand the carcinogenesis of bladder cancer in Taiwan, we utilized the proteomic approach to search for potential biomarkers of transitional cell carcinoma (TCC). Analysis by 2-DE and MS/MS indicated that seven proteins are down-regulated and three proteins up-regulated in grade III samples as compared with those of grade II. Of these deregulated proteins, fatty acid binding proteins, annexin V, heat-shock protein 27, and lactate dehydrogenase have been shown to be associated with bladder cancer. Our studies also found altered expression of a group of proteins that have not been documented previously in bladder cancer, including annexin I, 15-hydroxyprostaglandin dehydrogenase, galectin-1, lysophospholipase and mitochondrial short-chain enoyl-coenzyme A hydratase 1 precursor. These results illustrate a pattern of differential protein expression between low- and high-grade tumors and it may be utilized as the molecular fingerprinting of a subset of bladder cancers. In addition, the present study provides a valuable resource in the study of pathological mechanisms in cancers of urothelial origin. The immunohistochemical staining of grade II and III TCC samples with antiserum to annexin I protein was utilized to confirm that the annexin I protein is up-regulated in grade III TCC.  相似文献   

4.
Charcot-Leyden crystal (CLC) protein, initially reported to possess weak lysophospholipase activity, is still considered to be the eosinophil's lysophospholipase, but it shows no sequence similarities to any known lysophospholipases. In contrast, CLC protein has moderate sequence similarity, conserved genomic organization, and near structural identity to members of the galectin superfamily, and it has been designated galectin-10. To definitively determine whether or not CLC protein is a lysophospholipase, we reassessed its enzymatic activity in peripheral blood eosinophils and an eosinophil myelocyte cell line (AML14.3D10). Antibody affinity chromatography was used to fully deplete CLC protein from eosinophil lysates. The CLC-depleted lysates retained their full lysophospholipase activity, and this activity could be blocked by sulfhydryl group-reactive inhibitors, N-ethylmaleimide and p-chloromercuribenzenesulfonate, previously reported to inhibit the eosinophil enzyme. In contrast, the affinity-purified CLC protein lacked significant lysophospholipase activity. X-ray crystallographic structures of CLC protein in complex with the inhibitors showed that p-chloromercuribenzenesulfonate bound CLC protein via disulfide bonds with Cys(29) and with Cys(57) near the carbohydrate recognition domain (CRD), whereas N-ethylmaleimide bound to the galectin-10 CRD via ring stacking interactions with Trp(72), in a manner highly analogous to mannose binding to this CRD. Antibodies to rat pancreatic lysophospholipase identified a protein in eosinophil and AML14.3D10 cell lysates, comparable in size with human pancreatic lysophospholipase, which co-purifies in small quantities with CLC protein. Ligand blotting of human and murine eosinophil lysates with CLC protein as probe showed that it binds proteins also recognized by antibodies to pancreatic lysophospholipase. Our results definitively show that CLC protein is not one of the eosinophil's lysophospholipases but that it does interact with eosinophil lysophospholipases and known inhibitors of this lipolytic activity.  相似文献   

5.
The role(s) of the eosinophil Charcot-Leyden crystal (CLC) protein in eosinophil or basophil function or associated inflammatory processes is yet to be established. Although the CLC protein has been reported to exhibit weak lysophospholipase activity, it shows virtually no sequence homology to any known member of this family of enzymes. The X-ray crystal structure of the CLC protein is very similar to the structure of the galectins, members of a beta-galactoside-specific animal lectin family, including a partially conserved galectin carbohydrate recognition domain (CRD). In the absence of any known natural carbohydrate ligand for this protein, the functional role of the CLC protein (galectin-10) has remained speculative. Here we describe structural studies on the carbohydrate binding properties of the CLC protein and report the first structure of a carbohydrate in complex with the protein. Interestingly, the CLC protein demonstrates no affinity for beta-galactosides and binds mannose in a manner very different from those of other related galectins that have been shown to bind lactosamine. The partial conservation of residues involved in carbohydrate binding led to significant changes in the topology and chemical nature of the CRD, and has implications for carbohydrate recognition by the CLC protein in vivo and its functional role in the biology of inflammation.  相似文献   

6.
7.
Far Westerns with digoxigenin-conjugated protein phosphatase-1 (PP1) catalytic subunit identified PP1-binding proteins in extracts from bovine, rat, and human brain. A major 70-kDa PP1-binding protein was purified from bovine brain cortex plasma membranes, using affinity chromatography on the immobilized phosphatase inhibitor, microcystin-LR. Mixed peptide sequencing following cyanogen bromide digestion identified the 70-kDa membrane-bound PP1-binding protein as bovine neurofilament-L (NF-L). NF-L was the major PP1-binding protein in purified preparations of bovine spinal cord neurofilaments and the cytoskeletal compartment known as post-synaptic density, purified from rat brain cortex. Bovine neurofilaments, at nanomolar concentrations, inhibited the phosphorylase phosphatase activity of rabbit skeletal muscle PP1 catalytic subunit but not the activity of PP2A, another major serine/threonine phosphatase. PP1 binding to bovine NF-L was mapped to the head region. This was confirmed by both binding and inhibition of PP1 by recombinant human NF-L fragments. Together, these studies indicate that NF-L fulfills many of the biochemical criteria established for a PP1-targeting subunit and suggest that NF-L may target the functions of PP1 in membranes and cytoskeleton of mammalian neurons.  相似文献   

8.
Inhibition of protein kinase C by annexin V.   总被引:11,自引:0,他引:11  
Annexin V is a protein of unknown biological function that undergoes Ca(2+)-dependent binding to phospholipids located on the cytosolic face of the plasma membrane. Preliminary results presented herein suggest that a biological function of annexin V is the inhibition of protein kinase C (PKC). In vitro assays showed that annexin V was a specific high-affinity inhibitor of PKC-mediated phosphorylation of annexin I and myosin light chain kinase substrates, with half-maximal inhibition occurring at approximately 0.4 microM. Annexin V did not inhibit epidermal growth factor receptor/kinase phosphorylation of annexin I or cAMP-dependent protein kinase phosphorylation of the Kemptide peptide substrate. Since annexin V purified from both human placenta and recombinant bacteria inhibited protein kinase C activity, it is not likely that the inhibitor activity was associated with a minor contaminant of the preparations. The following results indicated that the mechanism of inhibition did not involve annexin V sequestration of phospholipid that was required for protein kinase C activation: similar inhibition curves were observed as phospholipid concentration was varied from 0 to 800 micrograms/mL; the extent of inhibition was not significantly affected by the order of addition of phospholipid, substrate, or PKC, and the core domain of annexin I was not a high-affinity inhibitor of PKC even though it had similar Ca2+ and phospholipid binding properties as annexin V. These data indirectly indicate that inhibition occurred by direct interaction between annexin V and PKC. Since the concentration of annexin V in many cell types exceeds the amounts required to achieve PKC inhibition in vitro, it is possible that annexin V inhibits PKC in a biologically significant manner in intact cells.  相似文献   

9.
Galectins are a growing family of animal lectins with common consensus sequences that bind beta-Gal and LacNAc residues. There are at present 14 members of the galectin family; however, certain galectins possess different structures as well as biological properties. Galectin-1 is a dimer of two homologous carbohydrate recognition domains (CRDs) and possesses apoptotic and proinvasive activities. Galectin-3 consists of a C-terminal CRD and an N-terminal nonlectin domain implicated in the oligomerization of the protein and is often associated with antiapoptotic activity. Because many cellular oligosaccharide receptors are multivalent, it is important to characterize the interactions of multivalent carbohydrates with galectins-1 and -3. In the present study, binding of bovine heart galectin-1 and recombinant murine galectin-3 to a series of synthetic analogs containing two LacNAc residues separated by a varying number of methylene groups, as well as biantennary analogs possessing two LacNAc residues, were examined using isothermal titration microcalorimetry (ITC) and hemagglutination inhibition measurements. The thermodynamics of binding of the multivalent carbohydrates to the C-terminal CRD domain of galectin-3 was also investigated. ITC results showed that each bivalent analog bound by both LacNAc residues to the two galectins. However, galectin-1 shows a lack of enhanced affinity for the bivalent straight chain and branched chain analogs, whereas galectin-3 shows enhanced affinity for only lacto-N-hexaose, a naturally occurring branched chain carbohydrate. The CRD domain of galectin-3 was shown to possess similar thermodynamic binding properties as the intact molecule. The results of this study have important implications for the design of carbohydrate inhibitors of the two galectins.  相似文献   

10.
BackgroundGalectins are multifunctional effectors, which all share absence of a signal sequence. It is not clear why galectins belong to the small set of proteins, which avoid the classical export route.MethodsProducts of recombinant galectin expression in P. pastoris were analyzed by haemagglutination, gel filtration and electrophoresis and lectin blotting as well as mass spectrometry on the level of tryptic peptides and purified glycopeptides(s). Density gradient centrifugation and confocal laser scanning microscopy facilitated localization in transfected human and rat cells, proliferation assays determined activity as growth mediator.ResultsDirecting galectin-1 to the classical secretory pathway in yeast produces N-glycosylated protein that is active. It cofractionates and -localizes with calnexin in human cells, only Gal-4 is secreted. Presence of N-glycan(s) reduces affinity of cell binding and growth regulation by Gal-1.ConclusionsFolding and activity of a galectin are maintained in signal-peptide-directed routing, N-glycosylation occurs. This pathway would deplete cytoplasm and nucleus of galectin, presence of N-glycans appears to interfere with lattice formation.General significanceAvailability of glycosylated galectins facilitates functional assays to contribute to explain why galectins invariably avoid classical routing for export.  相似文献   

11.
Galectins are implicated in a large variety of biological functions, many of which depend on their carbohydrate-binding ability. Fifteen members of the family have been identified in vertebrates based on binding to galactose (Gal) that is mediated by one or two, evolutionarily conserved, carbohydrate-recognition domains (CRDs). Variations in glycan structures expressed on glycoconjugates at the cell surface may, therefore, affect galectin binding and functions. To identify roles for different glycans in the binding of the three types of mammalian galectins to cells, we performed fluorescence cytometry at 4 degrees C with recombinant rat galectin-1, human galectin-3, and three forms of human galectin-8, to Chinese hamster ovary (CHO) cells and 12 different CHO glycosylation mutants. All galectin species bound to parent CHO cells and binding was inhibited >90% by 0.2 M lactose. Galectin-8 isoforms with either a long or a short inter-CRD linker bound similarly to CHO cells. However, a truncated form of galectin-8 containing only the N-terminal CRD bound only weakly to CHO cells and the C-terminal galectin-8 CRD exhibited extremely low binding. Binding of the galectins to the different CHO glycosylation mutants revealed that complex N-glycans are the major ligands for each galectin except the N-terminal CRD of galectins-8, and also identified some fine differences in glycan recognition. Interestingly, increased binding of galectin-1 at 4 degrees C correlated with increased propidium iodide (PI) uptake, whereas galectin-3 or -8 binding did not induce permeability to PI. The CHO glycosylation mutants with various repertoires of cell surface glycans are a useful tool for investigating galectin-cell interactions as they present complex and simple glycans in a natural mixture of multivalent protein and lipid glycoconjugates anchored in a cell membrane.  相似文献   

12.
A soluble β-galactoside binding 14.5 kDa lectin was purified from the heart of Capra hircus. Its metal independent nature, preferential affinity for β-d-lactose and 90–94% homology with carbohydrate recognition domain of previously reported galectin-1 confirmed its inclusion in galectin-1 subfamily. The secondary structures of the deduced amino acid sequences were generally conserved with previously reported Gal-1. Exposure of the purified protein to varying temperature and pH, oxidant, thiol blocking reagents, denaturants and detergents resulted in significant changes in UV (ultraviolet), fluorescence, CD (circular dichroism) and FTIR (fourier transform infra red) spectra, thus strongly emphasizing the vitality of regular secondary structure of galectins for maintaining their active conformation. Bioinformatics studies corroborated the results obtained in wet lab. Our findings based on physico-chemical properties, oxidative inactivation and structural analysis of the goat heart galectin-1 suggests significant implications in potential biological and clinical applications.  相似文献   

13.
To study potential roles of plasma membrane-associated extracellular cathepsin B in tumor cell invasion and metastasis, we used the yeast two-hybrid system to screen for proteins that interact with human procathepsin B. The annexin II light chain (p11), one of the two subunits of the annexin II tetramer, was one of the proteins identified. We have confirmed that recombinant human procathepsin B interacts with p11 as well as with the annexin II tetramer in vitro. Furthermore, procathepsin B could interact with the annexin II tetramer in vivo as demonstrated by coimmunoprecipitation. Cathepsin B and the annexin II tetramer were shown by immunofluorescent staining to colocalize on the surface of human breast carcinoma and glioma cells. Taken together, our results indicate that the annexin II tetramer can serve as a binding protein for procathepsin B on the surface of tumor cells, an interaction that may facilitate tumor invasion and metastasis.  相似文献   

14.
Annexin II is a heterotetramer, consisting of two 11-kDa (p11) and two 36-kDa (p36) subunits, that is produced by osteoclasts and stimulates osteoclast formation. However, its receptor is unknown. We showed that annexin II binds to normal primary human marrow stromal cells and the Paget's marrow-derived PSV10 stromal cell line to induce osteoclast formation. 125I-Labeled annexin II binding assays with PSV10 cells demonstrated that there was a single class of annexin II receptors with a Kd of 5.79 nm and Bmax of 2.13 x 10(5) receptors/cell. Annexin III or annexin V did not bind this receptor. Using 125I-labeled annexin II binding to screen NIH3T3 transfected with a human marrow cDNA expression library, we identified a putative annexin II receptor clone, which encoded a novel 26-kDa type I membrane receptor protein when expressed in HEK 293 cells. HEK 293 cells transformed with the cloned annexin II receptor cDNA showed a similar binding affinity to annexin II as that observed in PSV10 cells. Chemical cross-linking experiments with biotinylated annexin II and intact PSV10 cells identified a 55-kDa band on Western blot analysis that reacted with both an anti-p11 antibody and streptavidin but not anti-p36 antibody. A rabbit polyclonal antibody raised against the putative recombinant annexin II receptor also recognized the same 26-kDa protein band detected in PSV10 cells. Importantly, the annexin II receptor antibody dose-dependently blocked the stimulatory effects of annexin II on human osteoclast formation, demonstrating that the receptor mediates the effects of annexin II on osteoclast formation.  相似文献   

15.
Cell surface glycans present docking sites to endogenous lectins. With growing insight into the diversity of lectin families it becomes important to answer the question on the activity profiles of individual family members. Focusing on galectins (-galactoside-binding proteins without Ca2+-requirement sharing the jelly-roll-like folding pattern), this study was performed to assess the potency of proto-type galectins (galectins-1 and -7 and CG-16) and the chimera-type galectin-3 to elicit selected cell responses by carbohydrate-dependent surface binding and compare the results. The galectins, except for galectin-1, were found to enhance detergent (SDS)-induced hemolysis of human erythrocytes to different degrees. Their ability to confer increased membrane osmofragility thus differs. Aggregation of neutrophils, thymocytes and platelets was induced by the proto-type galectin-1 but not -7, by CG-16 and also galectin-3. Cell-type-specific quantitative differences and the importance of the fine-specificity of the galectin were clearly apparent. In order to detect cellular responses based on galectin binding and bridging of cells the formation of haptenic-sugar-resistant (HSR) intercellular contacts (an indicator of post-binding signaling) was monitored. It was elicited by CG-16 and galectin-1 but not galectin-3, revealing another level at which activities of individual galectins can differ. Acting as potent elicitor of neutrophil aggregation, CG-16-dependent post-binding effects were further analyzed. Carbohydrate-dependent binding to the neutrophils' surface led to a sustained increase of cytoplasmic Ca2+ concentration in a dose-dependent manner. The ability of CG-16 to activate H2O2 generation by human peripheral blood neutrophils was primed by the Ca2+-ionophor ionomycin and by cytochalasin B. In a general context, these results emphasize that – besides plant lectins as laboratory tools – animal lectins can trigger cell reaction cascades, implying potential in vivo relevance for the measured activities. Within the family of galectins, the activity profiles depend on the target cell type and the individual galectin. Notably, proto-type galectins do not necessarily share a uniform capacity as elicitor.  相似文献   

16.
Galectins are a family of Ca2+-independent soluble lectins characterized by their affinity to β-galactosides. Mammalian galectins have been shown to play a defense role against certain bacteria, fungi and viruses. However, the immunological functions of galectins in fish is poorly characterized. Here we demonstrated that the expression of galectin-1 gene from the flounder Paralichthys olivaceus was decreased in the initial 8 h after challenge with poly I:C, then increased markedly from 24 h onwards, and the recombinant galectin-1 was able to neutralize the lymphocystis disease virus (LCDV), inhibiting the formation of cytopathic effects. In addition, the recombinant galectin had a potential anti-inflammatory activity against infection by LCDV, and was able to restrain the overexpression of the anti-viral protein gene mx against virus infection. These results indicate that flounder galectin-1 has an anti-viral activity, capable of reducing LCDV pathogenicity.  相似文献   

17.

Introduction

Placental protein 13 (PP13), a placenta specific protein, is reduced in the first trimester of pregnancy in women who subsequently develop preeclampsia. A naturally occurring PP13 deletion of thymidine at position 221 (DelT221 or truncated variant) is associated with increased frequency of severe preeclampsia. In this study we compared the full length (wildtype) PP13 and the truncated variant.

Methods

Full length PP13 or its DelT221 variant were cloned, expressed and purified from E-Coli. Both variants were administrated into pregnant rats at day 8 of pregnancy for slow release (>5 days) through osmotic pumps and rat blood pressure was measured. Animals were sacrificed at day 15 or day 21 and their utero-placental vasculature was examined.

Results

The DelT221 variant (11 kDA) lacked exon 4 and a part of exon 3, and is short of 2 amino acids involved in the carbohydrate (CRD) binding of the wildtype (18 kDA). Unlike the wildtype PP13, purification of DelT221 variant required special refolding. PP13 specific poly- clonal antibodies recognized both PP13 and DelT221 but PP13 specific monoclonal antibodies recognized only the wildtype, indicating the loss of major epitopes. Wildtype PP13 mRNA and its respective proteins were both lower in PE patients compared to normal pregnancies. The DelT221 mutant was not found in a large Caucasian cohort. Pregnant rats exposed to wildtype or DelT221 PP13 variants had significantly lower blood pressure compared to control. The wildtype but not the DelT221 mutant caused extensive vein expansion.

Conclusion

This study revealed the importance of PP13 in regulating blood pressure and expanding the utero-placental vasculature in pregnant rats. PP13 mutant lacking amino acids of the PP13 CRD domain fails to cause vein expansion but did reduce blood pressure. The study provides a basis for replenishing patients at risk for preeclampsia by the full length but not the truncated PP13.  相似文献   

18.
Membranes from human placenta contain proteins which inhibit the activity of phospholipases A2 by binding to phospholipid thus impeding substrate availability. We used unilamellar mixed liposomes and a partially purified cytosolic phospholipase A2 from placenta for characterizing this substrate-depleting activity. A major portion of these inhibitory proteins was released by extracting washed membranes with a Ca+(+)-chelator. Biochemical fractionation and systematic analysis resulted in the unequivocal identification of a series of annexin proteins. We describe a straightforward procedure which allows to obtain 8 annexins from placenta either in pure form or as a mixture of two annexins. One of them was obtained in two forms which had the same molecular mass of 68 kDa but differed in charge. We also present suggestive evidence for a novel annexin I-related polypeptide of Mr 45,000 which is an excellent in vitro substrate for protein kinase C. We estimate that about 2% of the total placental membrane proteins are annexins. For achieving half inhibition of phospholipase A2 activity with pure annexins, up to a 6.5-fold difference in the amounts of protein was observed when calculated on a molar basis. This suggests specificity of individual annexin species.  相似文献   

19.
The galectins are a family of animal lectins that possess similar carbohydrate binding specificities and conserved consensus sequences. The biological properties of mammalian galectins include the regulation of inflammation, cell adhesion, cell proliferation and cell death. Evidence suggests that the biological activities of the galectins are related to their multivalent binding properties since most galectins possess two carbohydrate recognition domains and are therefore bivalent. For example, galectin-1, which is dimeric, binds and cross-links specific glycoprotein counter-receptors on the surface of human T-cells leading to apoptosis [J. Immunol. 163 (1999) 3801]. Different galectin-1 counter-receptors associated with specific phosphatase or kinase activities formed separate clusters on the surface of the cells as a result of the lectin binding to the carbohydrate chains of the respective glycoproteins. Importantly, monovalent galectin-1 is inactive in this system. This indicates that the separation and organization of signaling molecules that result from galectin-1 binding is involved in the apoptotic signal. The separation of specific glycoprotein receptors induced by galectin-1 binding was modeled on the basis of molecular and structural studies of the binding of lectins to multivalent carbohydrates resulting in the formation of specific two- and three-dimensional cross-linked lattices [Biochemistry 36 (1997) 15073]. In this article, the binding and cross-linking properties of galectin-1 and other lectins are reviewed as a model for the biological signal transduction properties of the galectin family of animal lectins.  相似文献   

20.
The actin cytoskeleton supports diverse cellular processes such as endocytosis, oriented growth, adhesion and migration. The dynamic nature of the cytoskeleton, however, has made it difficult to define the roles of the many accessory molecules that modulate actin organization, especially the multifunctional adapter protein annexin II. We now report that the compound withaferin A (1) can alter cytoskeletal architecture in a previously unknown manner by covalently binding annexin II and stimulating its basal F-actin cross-linking activity. Drug-mediated disruption of F-actin organization is dependent on annexin II expression by cells and markedly limits their migratory and invasive capabilities at subcytotoxic concentrations. Given the extensive ethnobotanical history of withaferin-containing plant preparations in the treatment of cancer and inflammatory and neurological disorders, we suggest that annexin II represents a feasible, previously unexploited target for therapeutic intervention by small-molecule drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号