首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Gluconeogenesis from amino acid precursors was increased in the perfused liver of neonatal rats compared with that of adults. Quinolinate (5mm) was less inhibitory to glucose formation from serine and hydroxyproline in the neonatal rat than in the adult, suggesting that the main route for glucose synthesis from these precursors in neonatal liver does not involve pyruvate as an intermediate.  相似文献   

3.
1. Feeding a high-glucose diet to weanling rats showed that high hepatic glucokinase activities could be induced at 18 days of age, i.e. 2 days after development of the enzyme begins. 2. The normal development of glucokinase activity can be retarded by weaning rats on to carbohydrate-free, high-fat and high-protein diets. 3. Precocious development of the enzyme before 16 days of age cannot be induced by oral glucose administration. 4. It is concluded that the ability to synthesize glucokinase develops very rapidly and that the nature of the diet determines the normal developmental pattern.  相似文献   

4.
The results with Corynebacterium glycinophilum AJ-3170 and various mutants from AJ-3170 indicated that l-serine production was almost inversely proportional to l-serine degrading activity. The crude extract of the parental strain, AJ-3170, showed l-serine and l-threonine degrading activities. The 2 activities were completely separated from each other by gel-filtration, indicating that each activity comes from a different enzyme. The l-serine degrading enzyme, l-serine dehydratase (SD), was purified 30-fold from AJ-3170. Molecular weight of SD was 130,000. The enzyme was specific for l-serine, activated slightly by FeCl2 and inhibited by MnCl2. The double reciprocal plots of SD rate against substrate concentration gave an upwards-curved line. The value of [S]0.5 was 35 mM.  相似文献   

5.
6.
7.
Regulation of hepatic tyrosine aminotransferase in genetically obese rats   总被引:1,自引:0,他引:1  
The activities of hepatic tyrosine aminotransferase, tryptophan oxygenase and serine dehydratase were increased in obese rats shortly after weaning. Immunotitration experiments showed that the increase in tyrosine aminotransferase activity resulted from an increase in enzyme protein in obese rats. No increase in hepatic tyrosine aminotransferase was observed in suckling pre-obese rats. The post-weaning increase in hepatic tyrosine aminotransferase of obese rats was only observed during the light phase of the diurnal cycle, but was prevented by pair-feeding and by starvation. Tryptophan increased hepatic tyrosine aminotransferase of lean rats to obese levels but had no effect in obese rats until tyrosine aminotransferase levels were reduced by starvation or adrenalectomy. Adrenalectomy abolished the increase in hepatic tyrosine aminotransferase activity in obese rats although serum corticosterone was normal in these animals. Hepatic and brain tyrosine concentrations were decreased in obese rats but normalized after adrenalectomy. The results suggest that the corticosteroid-dependent increase in food and tryptophan intake may be the primary cause of the increased hepatic amino acid catabolism of obese rats.  相似文献   

8.
Previous studies of serine dehydratase (EC 4.2.1.13) and ornithine aminotransferase (EC 2.6.1.13) adaptation in rat liver showed that in rats on a high protein diet, glucocorticoid administration increased serine dehydratase activity while simultaneously reducing the activity of ornithine aminotransferase. The present study examines the role of enzyme synthesis in the expression of these and other dissimilar adaptive characteristics of the two enzymes. Both enzymes were purified to crystallinity and used to prepare specific antibodies. Changes in the rate of synthesis of each enzyme during adaptation were then measured immunochemically. In rats fed ad libitum, the synthetic rates for both enzymes exhibited circadian rhythm, although enzyme levels remained relatively constant. The circadian cycle for ornithine aminotransferase synthesis was in phase with the cycles for body weight and relative liver weight (maxima at 9 a.m., minima at 9 p.m.) but was approximately 12 hours out of phase with the cycle for serine dehydratase synthesis. 9alpha-Fluoro-11beta, 21-dihydroxy-16alpha, 17alpha-isopted at 9 a.m., increased serine dehydratase synthesis and simultaneously decreased the synthesis of ornithine aminotransferase. When triamcinolone was injected at 9 p.m., however, serine dehydratase synthesis was not stimulated, although the reduction of ornithine aminotransferase synthesis was still produced. These results suggest that: (a) circadian cycling of synthesis may be a general phenomenon in enzyme regulation even though for enzymes with relatively long half-lives, such cycling may not be reflected as fluctuations in enzyme levels; (b) such circadian rhythmicity may also involve cyclic changes in the responsiveness of the enzyme-forming system to regulatory stimuli; (c) whereas the adaptive behavior of serine dehydratase typifies that of amino acid-catabolizing enzymes in general, the responses of ornithine aminotransferase denote a functional association of this enzyme with anabolic processes. On this basis, the possibility that ornithine aminotransferase plays a pivotal role in the regulation of urea cycle activity and nitrogen balance is discussed.  相似文献   

9.
Regulation of tyrosine aminotransferase in foetal rat liver.   总被引:1,自引:2,他引:1       下载免费PDF全文
A specific tyrosine aminotransferase, separate from the aspartate aminotransferases, is present in low concentration in foetal rat liver at the 21st day of gestation. Intraperitoneal injections of tyrosine methyl ester into the foetuses in utero increase the activity 2-fold, whereas glucose injections decrease it. Tyrosine, dexamethasone and dibutyryl cyclic AMP induce the enzyme activity in organ culture to the same extent as in adult rat liver in vivo.  相似文献   

10.
In a previous study we showed that rats fed ad libitum and maintained on a 12-h light/ 12-h dark cycle demonstrated out-of-phase circadian oscillations in the rates of ornithine aminotransferase and serine dehydratase synthesis. As part of an investigation of the factors regulating both the generation of these cycles and their dissimilarity, this paper ompares the circadian fluctuations in the rates of ornithine aminotransferase and serine dehydratase synthesis measured immunochemically in rats given a single 2-h daily feeding in conjunction with exposure to constant light or a 12-h light/12-h dark cycle. When the 2-hr feeding was administered to rats under constant light, reciprocal circadian oscillations in ornithine aminotransferase and serine dehydratase synthesis were observed regardless of the temporal location of the feeding interval. Ornithine aminotransferase synthesis began to increase after the feeding interval and reached a maximum 12 h later while serine dehydratase showed the opposite response. In rats maintained on both the restricted feeding regimen and a 12-h light/12-h dark cycle, however, retention of synthesis oscillations depended on the temporal location of the restricted feeding interval within the light-dark cycle. Rats fed for 2 h at the beginning of the dark phase exhibited circadian oscillations in serine dehydratase synthesis and a high nonoscillating level of ornithine aminotransferase synthesis, whereas rats fed for 2 h at the beginning of the light phase exhibited circadian oscillations in ornithine aminotransferase synthesis and a low nonoscillating level of serine dehydratase synthesis. These responses suggest the existence of meal-responsive and light-responsive regulators of ornithine aminotransferase and serine dehydratase synthesis.  相似文献   

11.
The aim of this study was to investigate the potential relationship between hypothyroidism and delta-aminolevulinate dehydratase (delta-ALA-D) activity in rat blood and liver. Experimental hypothyroidism was induced in weanling rats by exposing their mothers to propylthiouracil (PTU) diluted in tap water (0.05% w/ v), ad libitum, during the lactational period (PTU group). Control (euthyroid) group included weanling rats whose mothers received just tap water, ad libitum, during the lactational period. Reverted-hypothyroid group (PTU + 3,3',5-triiodo-L-thyronine [T(3)]) included weanling rats whose mothers were exposed to PTU similarly to those in the hypothyroid group, but pups received daily subcutaneous injections of T(3) (20 microg/kg, from Postnatal Days 2-20). After the treatment, serum T(3) levels were drastically decreased (around 70%) in the PTU group, and this phenomenon was almost reverted by exogenous T(3). PTU decreased blood delta-ALA-D activity by 75%, and T(3) treatment prevented such phenomena. Erythrocytes and hemoglobin levels were increased by 10% in PTU-treated animals and higher increments (around 25%) were observed in these parameters when exogenous T(3) was coadministered. Dithiothreitol did not change blood delta-ALA-D activity of PTU-exposed animals when present in the reaction medium, suggesting no involvement of the enzyme's essential thiol groups in PTU-induced delta-ALA-D inhibition. PTU did not affect blood delta-ALA-D activity in vitro. These results are the first to show a correlation between hypothyroidism and decreased delta-ALA-D activity and point to this enzyme as a potential molecule involved with hypothyroidism-related hematological changes.  相似文献   

12.
13.
14.
The development of hepatic glucokinase in the neonatal rat   总被引:18,自引:17,他引:1       下载免费PDF全文
1. Glucokinase and hexokinase activities have been determined in the livers of newborn rats and attempts made to influence in vivo the development of the glucokinase. 2. Glucokinase first appears in rat liver about 16 days after birth and adult activities are reached 10–12 days later. Evidence is presented which indicates that this represents synthesis of new protein. Hexokinase activities remain constant throughout the period of glucokinase development. 3. Both exogenous glucose and insulin are necessary for the natural development of glucokinase, for this is retarded in starved and alloxan-diabetic neonatal rats. 4. The absence of glucokinase during the first 2 weeks of extrauterine life in the rat is not due to lack of insulin. 5. Attempts to advance the time at which glucokinase first appears by infusions of glucose, insulin and chlorpropamide alone and in various combinations have resulted in marginal effects only. 6. When rats are starved for 3 days during the period of glucokinase development and then re-fed, glucokinase is more rapidly synthesized, indicating that the potential ability to synthesize glucokinase continues to develop throughout the period of starvation. 7. Some possible reasons for the comparatively late development of glucokinase are discussed.  相似文献   

15.
Serine dehydratase was induced in the kidneys of normal rats by the administration of either glucagon or dexamethasone. The increase in enzyme activity was associated with an increase in both enzyme protein and its mRNA, which were determined respectively by Western blot and RNA blot analysis. No apparent differences were observed between kidney and liver in the molecular weights of serine dehydratase proteins and the sizes of their mRNAs. Although kidney serine dehydratase was dramatically induced by either glucagon or dexamethasone, the liver enzyme was induced by glucagon but not by dexamethasone alone in the intact rat. On the other hand, liver serine dehydratase was induced in starvation, diabetes mellitus, and a high-protein diet. The kidney enzyme could not be induced under any of these conditions.  相似文献   

16.
Dexamethasone administration markedly increases the activity of tyrosine aminotransferase in postnatal rat liver. The glucocorticoid fails to induce the enzyme in foetal rats when administered in utero. Dexamethasone binding activity of rat liver cytoplasm is low or absent in foetal animals but increases to adult levels 1–2 days after birth. In vitro experiments with isolated nuclei indicate that foetal nuclei have the capacity to accumulate dexamethasone but only when presented with cytosol-bound glucocorticoid.  相似文献   

17.
1. A rough inverse correlation between liver serine dehydratase activity and species body size was observed with mammals. This was not found for glutamate, malate or lactate dehydrogenase, fumarase or aspartate-2-oxoglutarate aminotransferase. Serine dehydratase (and certain liver aminotransferases showing a similar species-size dependence) may have a role in the stimulation of heat production. 2. Cold-exposed rats showed a 3-4 fold increase in serine dehydratase activity. 3. No liver serine dehydratase was measurable in amphibia. 4. In mammals high liver serine-pyruvate aminotransferase is associated with a flesh-eating dietary habit. High activity was found in amphibia and goldfish. A gluconeogenic role is suggested.  相似文献   

18.
The activities of tryptophan oxygenase and ornithine aminotransferase are known to increase markedly in rat liver during the postnatal period. The aim of this study was to determine whether thyroxine regulates the development of these two enzymes. It was found that hyperthyroidism had no effect on the activity of tryptophan oxygenase, but caused a modest increase of ornithine aminotransferase activity at 10 days of age. The latter effect persisted in adrenalectomized animals, indicating that it was not secondary to elevation of plasma corticosterone. When thyroxine was administered together with cortisone acetate, elevation of ornithine aminotransferase activity was substantially greater than that observed with cortisone acetate alone. It is concluded that the postnatal development of hepatic ornithine aminotransferase is primarily controlled by glucocorticoids, but that the effect of these hormones may be potentiated by thyroxine.  相似文献   

19.
Summary Several brain-specific mechanisms control the formation of the endogenous excitatory amino acid receptor antagonist kynurenic acid (KYNA) in the adult rat brain. Two of these, dopaminergic neurotransmission and cellular energy metabolism, were examined in the brain of immature (postnatal day 7) rats. The results indicate that during the early postnatal period cerebral KYNA synthesis is exceptionally amenable to modulation by dopaminergic mechanisms but rather insensitive to fluctuations in cellular energy status. These findings may be of relevance for the role of KYNA in the function and dysfunction of the developing brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号