首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the composition of methanol/glucose-mixtures as only sources of carbon and energy on growth and regulation of the synthesis of enzymes involved in methanol-dissimilation was studied under chemostat conditions at a fixed dilution rate with the methylotrophic yeasts Hansenula polymorpha and Kloeckera sp. 2201. Both carbon sources were found to be utilized completely independently of the composition of the C1/C6 mixture. Using mixtures of 14C-labelled methanol and glucose the growth yield for glucose was found to be constant for all C1/C6-mixtures tested and both yeasts. The growth yield for methanol, however, was reduced by up to 25% when the proportion of methanol in the inflowing medium was lower than 20% (w/w with respect to glucose) for H. polymorpha and 50% (w/w with respect to glucose) for Kloeckera sp. 2201 respectively. During growth with C1/C6-mixtures containing higher C1-proportions of methanol regular growth yields for methanol were recorded which corresponded to the growth yields found with methanol as the only carbon source.The regulation of the synthesis of the enzymes of the dissimilatory pathway for methanol was found to be under multiple control. Although glucose was present in the medium methanol had a positive effect on the synthesis of these enzymes. Thus, in addition to derepression induction by methanol was also observed. This inductive effect was found to increase with increasing proportions of methanol in the mixture. Depending on the enzyme, 10–40% methanol in the mixture resulted in a maximal induction with enzyme specific activities equal to those found in cells grown with methanol as the only carbon source. No further enhancements in enzyme specific activities were observed during growth on mixtures containing more than 40% methanol.Abbreviations and terms C1 Methanol - C6 glucose - C1/C6 mixture compositions are given in % (w/w) - C0 concentration of 14C in the inflowing medium (DPM ml-1) - C(t) concentration of 14C incorporated in cells as a function of time t (DPM ml-1) - d dilution rate (h-1) - DPM disintegrations per minute - q s q C1 and q C6 are specific rates of consumption of substrate, methanol and glucose respectively [g (g cell dry weight)-1 h-1] - q O2 and q CO2 are the specific rates of oxygen consumption and carbon dioxide release [mmol (g cell dry weight)-1 h-1] - RQ respiration quotient (q CO2 q O2 -1) - s C1 and s C6 are the residual concentrations of methanol and glucose in the culture liquid (g l-1) - s O/C1 and s O/C6 are the concentrations of methanol and glucose in the inflowing medium (g l-1) - Sp.A. enzyme specific activity - x cell dry weight concentration (g l-1) - Y X/C1 and Y X/C6 are growth yields on methanol and glucose respectively (g cell dry weight (g substrate)-1 - Y C/C1 growth yield with methanol with respect to carbon (g carbon assimilated (g carbon supplied)-1 - m maximum specific growth rate (h-1)  相似文献   

2.
The influence of nitrogen limitation on the regulation of the methanol oxidizing enzymes alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase in the two methylotrophic yeastsHansenula polymorpha andKloeckera sp. 2201 was studied in continuous culture. When shifted from carbon-limited growth conditions (with a mixture of glucose and methanol as carbon sources) to a nitrogen-limited environment both cultures were found to go through a transition phase where neither enhanced residual concentrations of the nitrogen source nor of one of the two carbon sources could be detected in the supernatant. As soon as nitrogen became a limiting substrate an immediate reorganisation of the cell composition was initiated: protein content of the cells dropped to approximately 40% of its initial value, glycogen was synthesized and the enzyme composition of the cells was changed. The peroxisomal enzymes alcohol oxidase and catalase in both organisms and the two dehydrogenases for formaldehyde and formate in cells ofKloeckera sp. 2201 were subject to degradation (catabolite inactivation). The measured rates of inactivation indicated that in cells ofH. polymorpha this process might be limited to peroxisomes, whereas inKloeckera sp. 2201 the degradation was found to affect peroxisomal as well as cytoplasmic enzymes. In contrast to methanol dissimilating enzymes the net rate of synthesis of hexokinase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was not affected by this process but those enzymes were synthesized with increased rates.  相似文献   

3.
The yeast Hansenula polymorpha was grown in a chemostat using either methanol or sorbitol as substrate or a mixture of both. Methanol alone could be utilized up to a dilution rate (D) of 0.18 h-1, and sorbitol allowed growth at D's higher than 0.52 h-1. In combination with sorbitol, methanol was completely utilized in the mixture even up to a D of 0.3 h-1, and partially utilized at higher D's, To elucidate the basis of methanol utilization at high D's, enzyme activities on the single substrates and on the substrate mixture were compared. At D's above 0.3 h-1 an increase of formate dehydrogenase activity was evident, an enzyme involved in the oxidation of methanol to carbon dioxide. It was concluded that at high D's large amounts of methanol were oxidized to generate energy. This was proved with 14C-methanol, and it was found that in the range of partial methanol utilization approximately 75% of methanol was converted to carbon dioxide and 25% incorporated into cell material.Abbreviation D dilution rate  相似文献   

4.
A comparative study was made of the regulation of the synthesis of methanol dissimilating enzymes inkloeckera sp. 2201 andHansenula polymorpha using chemostat and batch growth conditions and methanol or glucose as carbon sources. During growth in methanol-limited chemostat cultures similar enzyme patterns for alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase in the two yeasts were found. When growing in batch culture with glucoseH. polymorpha, but notKloeckera sp. 2201, was found to produce ethanol which might affect the synthesis of these enzymes.  相似文献   

5.
Hansenula polymorpha has been grown in a methanol-limited continuous culture at a variety of dilution rates. Cell suspensions of the yeast grown at a dilution rate of 0.16 h-1 showed a maximal capacity to oxidize excess methanol (QO 2 max ) which was 1.6 times higher than the rate required to sustain the growth rate (Q O2). When the dilution rate was decreased to 0.03 h-1, QO 2 max of the cells increased to a value of more than 20 times that of Q O2. The enzymatic basis for this tremendous overcapacity for the oxidation of excess methanol at low growth rates was found to be the methanol oxidase content of the cells. The level of this enzyme increased from 7% to approximately 20% of the soluble protein when the growth rate was decreased from 0.16 to 0.03 h-1. These results were explained on the basis of the poor affinity of methanol oxidase for its substrates. Methanol oxidase purified from Hansenula polymorpha showed an apparent K mfor methanol of 1.3 mM in air saturated reaction mixtures and the apparent K mof the enzyme for oxygen was 0.4 mM at a methanol concentration of 100 mM.The involvement of an oxygen dependent methanol oxidase in the dissimilation of methanol in Hansenula polymorpha was also reflected in the growth yield of the organism. The maximal yield of the yeast was found to be low (0.38 g cells/g methanol). This was not due to a very high maintenance energy requirement which was estimated to be 17 mg methanol/g cells x h.  相似文献   

6.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

7.
The regulation of the synthesis of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase was investigated in the methanol-utilizing yeast Hansenula polymorpha. The organism was found to synthesize immunologically identical alcohol oxidases during growth on glycerol and methanol. Growth on glycerol, however, was not dependent on the alcohol oxidase, as was shown with a mutant without alcohol oxidase protein. Similarly it was shown with a catalase activity negative mutant that high catalase activity during growth on glycerol was not a prerequisite for the utilization of this substrate, though absolutely required for growth on methanol.Experiments were conducted with mixed substrates to study the influence of methanol on alcohol oxidase synthesis. In batch cultures, growth on ribose plus methanol resulted in an enhanced rate of alcohol oxidase synthesis as compared to ribose alone. In continuous cultures, (D=0.1 h-1) addition of methanol to glycerol-, glucose-, or sorbose-limited cultures gave rise to increased alcohol oxidase activity of up to 20 U/mg, which is about by 2 times higher than the specific activity used for growth on methanol alone. The increase in specific activity of the dissimilatory enzymes on the mixed substrates is partly due to methanol per se, as was shown by a mutant unable to dissimilate or assimilate methanol.  相似文献   

8.
Formaldehyde dehydrogenase and formate dehydrogenase were purified 45- and 16-fold, respectively, from Hansenula polymorpha grown on methanol. Formaldehyde dehydrogenase was strictly dependent on NAD and glutathione for activity. The K mvalues of the enzyme were found to be 0.18 mM for glutathione, 0.21 mM for formaldehyde and 0.15 mM for NAD. The enzyme catalyzed the glutathine-dependent oxidation of formaldehyde to S-formylglutathione. The reaction was shown to be reversible: at pH 8.0 a K mof 1 mM for S-formylglutathione was estimated for the reduction of the thiol ester with NADH. The enzyme did not catalyze the reduction of formate with NADH. The NAD-dependent formate dehydrogenase of H. polymorpha showed a low affinity for formate (K mof 40 mM) but a relatively high affinity for S-formylglutathione (K mof 1.1 mM). The K mvalues of formate dehydrogenase in cell-free extracts of methanol-grown Candida boidinii and Pichia pinus for S-formylglutathione were also an order of magnitude lower than those for formate. It is concluded that S-formylglutathione rather than free formate is an intermediate in the oxidation of methanol by yeasts.  相似文献   

9.
10.
In hansenula polymorpha glycerol is metabolized via glycerol kinase and NAD(P)-independent glycerol-3-phosphate (G3P) dehydrogenase, enzymes which hitherto were reported to be absent in this methylotrophic yeast. Activity of glycerol kinase was readily detectable when cell-free extracts were incubated at pH 7–8 with glycerol/ATP/Mg2+ and a discontinuous assay for G3P formation was used. This glycerol kinase activity could be separated from dihydroxyacetone (DHA) kinase activity by ion exchange chromatography. Glycerol kinase showed relatively low affinities for glycerol (apparent K m=1.0 mM) and ATP (apparent K m=0.5 mM) and was not active with other substrates tested. No inhibition by fructose-1,6-bisphosphate (FBP) was observed. Both NAD-dependent and NAD(P)-independent G3P dehydrogenases were present. The latter enzyme could be assayed with PMS/MTT and cosedimented with the mitochondrial fraction. Glucose partly repressed synthesis of glycerol kinase and NAD(P)-independent G3P dehydrogenase, but compared to several other non-repressing carbon sources no clear induction of these enzymes by glycerol was apparent. Amongst glycerolnegative mutants of H. polymorpha strain 17B (a DHA kinase-negative mutant), strains blocked in either glycerol kinase or membrane-bound G3P dehydrogenase were identified. Crosses between representatives of the latter mutants and wild type resulted in the isolation of, amongst others, segregants which had regained DHA kinase but were still blocked in the membrane-bound G3P dehydrogenase. These strains, employing the oxidative pathway, were only able to grow very slowly in glycerol mineral medium.Abbreviations DHA dihydroxyacetone - G3P glycerol-3-phosphate - EMS ethyl methanesulphonate - MTT 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide - PMS phenazine methosulphate - FBP fructose-1,6-bisphosphate  相似文献   

11.
A study of enzyme profiles in Hansenula polymorpha grown on various carbon substrates revealed that the synthesis of the methanol dissimilatory and assimilatory enzymes is regulated in the same way, namely by catabolite repression and induction by methanol. Mutants of H. polymorpha blocked in dihydroxyacetone (DHA) synthase (strain 70 M) or DHA kinase (strain 17 B) were unable to grow on methanol which confirmed the important role attributed to these enzymes in the biosynthetic xylulose monophosphate (XuMP) cycle. Both mutant strains were still able to metabolize methanol. In the DNA kinase-negative strain 17 B this resulted in accumulation of DHA. Although DHA kinase is thought to be involved in DHA and glycerol metabolism in methylotrophic yeasts, strain 17 B was still able to grow on glycerol at a rate similar to that of the wild type. DHA on the other hand only supported slow growth of this mutant when relatively high concentrations of this compound were provided in the medium. This slow but definite growth of strain 17 B on DHA was not based on the reversible DHA synthase reaction but on conversion of DHA into glycerol, a reaction catalyzed by DNA reductase. The subsequent metabolism of glycerol in strain 17 B and in wild type H. polymorpha, however, remains to be elucidated.Abbreviations XuMP xylulose monophosphate - DHA dihydroxyacetone - EMS ethyl methanesulphonate  相似文献   

12.
In contrast to its diauxic behaviour in batch culture, Thiobacillus A2 grew in chemostat culture using glucose and succinate as dual limiting substrates. Biomass production under dual limitations was the sum of that on single substrates with each substrate being oxidized and assimilated to similar extents in single and dual substrate-limited cultures. In glucose and glucose + succinate-limited cultures glucose was oxidized largely by the Entner-Doudoroff and pentose phosphate pathways, but other mechanisms also contributed and the ratios of pathways depended on substrate ratios and the previous substrate-history of the culture. Variations in specific activities of enzymes of carbohydrate metabolism following switches from single to mixed substrates were considerable, ranging from fourfold for fructose diphosphate aldolase to more than 200-fold for hexokinase, fructose diphosphatase, glucose 6-phosphate and 6-phosphogluconate dehydrogenases. Changes in specific activities occurred only over prolonged time periods in the chemostat, probably reflecting low concentrations of free substrates in carbon-limited cultures and consequent low levels of catabolite repression.  相似文献   

13.
Gluconobacter oxydans was grown successively in glucose and nitrogen-limited chemostat cultures. Construction of mass balances of organisms growing at increasing dilution rates in glucose-limited cultures, at pH 5.5, revealed a major shift from extensive glucose metabolism via the pentose phosphate pathway to the direct pathway of glucose oxidation yielding gluconic acid. Thus, whereas carbon dioxide production from glucose accounted for 49.4% of the carbon input at a dilution rate (D)=0.05 h-1, it accounted for only 1.3% at D=0.26 h-1. This decline in pentose phosphate pathway activity resulted in decreasing molar growth yields on glucose. At dilution rates of 0.05 h-1 and 0.26 h-1 molar growth yields of 19.5 g/mol and 3.2 g/mol, respectively, were obtained. Increase of the steady state glucose concentration in nitrogen-limited chemostat cultures maintained at a constant dilution rate also resulted in a decreased flow of carbon through the pentose phosphate pathway. Above a threshold value of 15–20 mM glucose in the culture, pentose phosphate pathway activity almost completely inhibited. In G. oxydans the coupling between energy generation and growth was very inefficient; yield values obtained at various dilution rates varied between 0.8–3.4 g/cells synthesized per 0.5 mol of oxygen consumed.  相似文献   

14.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

15.
Beneckea natriegens oxidizes sodium formate constitutively when grown on glucose or glycerol in chemostat culture, but cannot utilize formate as the sole source of carbon and energy for growth. However, when grown on a mixture of glucose and formate (D=0.37 h-1, pH 7.6) the yield is higher than on glucose alone.The yield, expressed in terms of g bacterial dry weight g-1 glucose plus formate carbon utilized, gave a linear relationship when plotted against the total heat of combustion of glucose plus formate utilized. Extrapolation of the plot cut the abscissa at a value equivalent to the heat of combustion of formate, which suggests that formate is not utilised as a source of carbon but only energy.In cultures with nitrate as the sole source of nitrogen the yield from glucose was lower than that observed with ammonia but the addition of formate to the culture utilizing nitrate resulted in an increase in the yield from glucose to a value similar to that observed with ammonia.At a culture pH value of 7.65 unused formate (<0.15–227 mM) in the culture supernatant had no effect on respiration spiration or yield, but at a culture pH of 6.7 excess formate caused a marked increase in respiration rate and a large decrease in the yield from glucose; further decrease in the pH value caused washout of the culture. This may be explained by undissociated formic acid causing uncoupling of oxidative phosphorylation.  相似文献   

16.
The influence of different physiological states on the glucose uptake and mineralization by Cytophaga johnsonae, a freshwater isolate, was examined in batch and chemostat cultures. At different growth rates under glucose limitation in chemostat cultures, different uptake patterns for 14C labeled glucose were observed. In batch culture and at high growth rates the glucose uptake potential showed a higher maximum velocity and a much lower substrate affinity than at lower growth rates. These findings and the results of short-term labeling patterns could be explained by two different glucose uptake mechanisms which enable the strain to grow efficiently both at high and low substrate concentrations. Substrate specificity studies showed that a structural change of the C-2 atom of the glucose molecule was tolerated by both systems. The consequences of these results for the ecophysiological classification of the Cytophaga group and for the operation of continuous cultures are discussed.  相似文献   

17.
18.
Klebsiella aerogenes NCTC 418 was grown anaerobically in chemostat culture with glycerol as source of carbon and energy. Glycerol-limited cultures did not ferment the carbon source with maximal efficiency but produced considerable amounts of 1,3-propanediol. The fraction of glycerol converted to this product depended on the growth rate and on the limitation: faster growing cells produced relatively more of this compound. Under glycerol excess conditions the energetic efficiency of fermentation was decreased due to the high 1,3-propanediol excretion rate. Evidence is presented that 1,3-propanediol accumulation exerts a profound effect on the cells' metabolic behaviour.When steady state glycerol-limited cultures were instantaneously relieved of the growth limitation a vastly enhanced glycerol uptake rate was observed, accompanied by a shift in the fermentation pattern towards 1,3-propanediol and acetate. This observation was consistent with the extremely high glycerol dehydrogenase activity that was measured in vitro. Some mechanisms that could be responsible for the energy dissipation during this response are discussed.  相似文献   

19.
With a glucose-limited chemostat culture of Bacillus stearothermophilus, increasing the incubation temperature progressively from 45°C to 63°C led to a progressive marked increase in the maintenance rates of glucose and oxygen consumption. Hence, at a fixed low dilution rate the yield values with respect to glucose and oxygen decreased substantially with increased temperature. However, the apparent Y glucose max and values did not decrease but actually increased with temperature, being highest at 63°C (i.e., close to the maximum growth temperature). With glucose-sufficient cultures growing at a fixed low dilution rate (0.2 h–1) and at their optimum temperature (55°C), glucose and oxygen consumption rates invariably were higher than that of a corresponding glucose-limited culture. Cation (K+ or Mg2+)-limited cultures expressed the highest metabolic rates and with the K+ limited culture this rate was found to be very markedly temperature dependent. As the temperature was increased from 45°C to 63°C the rate of glucose consumption increased 1.8-fold, and that of oxygen consumption by 3.7-fold. The culture pH value also exerted a noticeable effect on the metabolic rate of a glucose-limited culture, particularly at the extremes of pH tolerance (5.5 and 8.5, respectively). A K+-limited culture was less affected with respect to metabolic rate by the culture pH value though the steady state bacterial concentration, and thus the cellular K+ content, changed substantially. These results are discussed in relation to previous findings of the behaviour of this organism in batch culture, and to the behaviour of other thermophilic Bacillus species in chemostat culture.  相似文献   

20.
Experiments were performed to reveal the extent to which individual heterotrophic substrates of a mixture contribute to the overall carbon and energy metabolism. For this reason Hansenula polymorpha MH 20 was chemostatically (C-limited) cultivated at different growth rates on mixtures of methanol and glucose fed at proportions of 3:1 and 1:3 (in weight units), respectively. The distributions of 14C-carbon from methanol in biomass as well as carbon dioxide (and supernatant) fractions were determined. From these results it followed, firstly, that energy derived from methanol dissimilation was used in part for the incorporation of glucose carbon, resulting in carbon conversion efficiencies for this substrate equivalent to yield coefficients of 0.61–0.69 g/g. Secondly, the growth yield data revealed that the efficiency of methanol conversion had to be increased in order to account for the experimentally determined yield figures. This was further confirmed by theoretical treatment of the growth yield data which showed that these could only be obtained if P/O-quotients for methanol conversion similar to those for glucose, i.e. 2.0–2.5, were considered. The latter property was regarded as the main reason for the observed improvement of growth yield accompanying the simultaneous utilization of methanol and glucose in this yeast.Abbreviations ATPM,a ATP required for incorporation of assimilated methanol at a given P/O-quotient - ATPM,d ATP generated from dissimilated methanol at a given P/O-quotient - G and M glucose and methanol; respectively (the indices u, a, d and e mean utilized, assimilated, dissimilated and incorporated by excess energy, respectively) - PGA 3-phosphoglyceric acid - Y G app apparent growth yield on glucose in presence of methanol - Y G P/O theoretical growth yield on glucose at a given P/O-quotient  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号