首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the adhesion of liposomes, composed of dipalmitoyl- or di-stearoylphosphatidycholine, on the surface of epithelial cells in culture. Sodium fluorescein was entrapped in liposomes for their visualization by fluorescence microscopy. It is found that sonicated unilamellar liposomes adhere predominantly along the sheet margins. Multilamellar liposomes and lipid-coated carmine particles adhere over the whole cellular surface. However, their adhesion along sheet margins was stronger, as evidenced by a brief trypsin treatment. A prolonged trypsin treatment removed all types of liposomes from the cell surface. After the cells were partly detached from each other, small liposomes readily adhered to the newly accessible cell margins. The existence of special lipid membrane-binding proteins on the cell surface is suggested.  相似文献   

2.
The competitive behavior of solid vs. fluid liposomes in liposome-cell adsorption and cell-to-liposome lipid transfer processes was investigated with L cells and FBT epithelial sheets. Binding and transfer experiments have demonstrated that: solid liposomes adhere to the cell surface as integral vesicles retaining the entrapped substance; fluid liposomes are partly disintegrated at the cell surface with concomitant entry of entrapped substances into the cytoplasm, while their lipids remain on the cell surface; fluid liposomes that escape lysis dissociate from the cell taking away cell lipid molecules. No lipid transfer occurs between the plasma membrane and solid liposomes. Cell-bound solid liposomes interfere with the transfer of cell lipids to fluid liposomes, while these in turn inhibit the binding of solid liposomes to the cell surface.  相似文献   

3.
The competitive behavior of solid vs. fluid liposomes in liposome-to-cell adsorption and cell-to-liposome lipid transfer processes was investigated with L cells and FBT epithelial sheets. Binding, transfer and 31P-NMR experiments have demonstrated that: (i) solid liposomes adhere to the cell surface as integral vesicles retaining the entrapped substances; (ii) fluid liposomes are partly disintegrated at the cell surface with concomitant entry of entrapped substances into the cytoplasm, while their lipids remain on the cell surface; (iii) fluid liposomes that escape lysis dissociate from the cell, taking away cell lipid molecules. The latter process underlies the mechanism of cell-to-fluid liposome lipid transfer. In contrast, no lipid transfer occurs between the plasma membrane and solid liposomes. Cell-bound solid liposomes interfere with the transfer of cell lipids to fluid liposomes, while these in turn inhibit the binding of solid liposomes to the cell surface. Moreover, cell-induced aggregation of both fluid and solid freshly added liposomes is also inhibited by preincubation of the cells with either solid or fluid liposomes. Thus, different types of interaction of both fluid and solid liposomes with the cell are mediated by the same (or closely related) sites on the cell surface.  相似文献   

4.
A new approach has been developed for studying the transfer of liposome-entrapped substances into cells. The cells are incubated with liposomes containing two markers that in the free (non-entrapped) state enter the cells at different rates. Comparison of the ratio of cell-associated markers applied either in free or in liposome-entrapped form permits the evaluation of different pathways of cellular uptake of the intraliposomal substances. When epithelial cell sheets were incubated with egg phosphatidylcholine liposomes containing two different sugars they became cell-associated at a ratio different from their initial ratio inside the liposomes. Since the cell-associated ratio was shifted towards the value observed when the cells were incubated with a mixture of the two sugars in the free state, it is suggested that the liposomes become permeable during incubation and that the liberated substances enter the cells in the free form. On the other hand, cell-liposome interaction was demonstrated by NMR measurement and gel-filtration experiments to result in transformation of small unilamellar liposomes into larger multilayered aggregates. This transformation depends on the contact of the liposomes with the cell sheet. It is supposed that interliposomal aggregation is the underlying mechanism of cell-induced leakage of liposomes.  相似文献   

5.
One hundred wild-type strains of the genus Lactobacillus were isolated from the small intestine of newly-slaughtered pigs up to 6 months of age. Cell surface hydrophobicity and capsule formation were studied on a number of strains. Strains showing high surface hydrophobicity as measured by the salt-aggregation test and hydrophobic interaction chromatography on Octyl Sepharose were commonly found to adhere in high numbers to isolated pig intestinal epithelial cells. Heat and protease treatment of bacteria of high surface hydrophobicity, including autoaggregating strains in phosphate-buffered saline, showed a drastic decline in this surface property. Three hydrophilic strains (LBp 1044, 1068 and 1073) also showed binding to intestinal cells but at a lower level (approx. 5 bacteria/cell) as compared with the best binding hydrophobic strain (LBp 1063, approx. 11 bacteria/cell). These findings suggest that different or multiple adhesion mechanisms may be involved in the colonization of the small intestinal mucosa of pigs. Cultures of selected strains grown in liquid media rich in carbohydrates did not affect their hydrophobic cell surface character. Therefore it seems less likely that carbohydrate capsule polymers are the major determinants of intestinal colonization of lactobacilli in pigs.  相似文献   

6.
Surface properties of lactobacilli isolated from the small intestine of pigs   总被引:12,自引:0,他引:12  
One hundred wild-type strains of the genus Lactobacillus were isolated from the small intestine of newly-slaughtered pigs up to 6 months of age. Cell surface hydrophobicity and capsule formation were studied on a number of strains. Strains showing high surface hydrophobicity as measured by the salt-aggregation test and hydrophobic interaction chromatography on Octyl Sepharose were commonly found to adhere in high numbers to isolated pig intestinal epithelial cells. Heat and protease treatment of bacteria of high surface hydrophobicity, including autoaggregating strains in phosphate-buffered saline, showed a drastic decline in this surface property. Three hydrophilic strains (LBp 1044, 1068 and 1073) also showed binding to intestinal cells but at a lower level (approx. 5 bacteria/cell) as compared with the best binding hydrophobic strain (LBp 1063, approx. 11 bacteria/cell). These findings suggest that different or multiple adhesion mechanisms may be involved in the colonization of the small intestinal mucosa of pigs. Cultures of selected strains grown in liquid media rich in carbohydrates did not affect their hydrophobic cell surface character. Therefore it seems less likely that carbohydrate capsule polymers are the major determinants of intestinal colonization of lactobacilli in pigs.  相似文献   

7.
Determinants of the developing oral flora in normal newborns.   总被引:5,自引:0,他引:5       下载免费PDF全文
The ability of Streptococcus species to selectively adhere to the oral epithelial cells of newborns was studied in vitro. On day 1 of life, mucosal cells from normal infants demonstrated selective attraction for the natural distribution of streptococci that would soon colonize these surfaces. Streptococcus salivarius and Streptococcus mitis adhered well in vitro to scraped cells from cheek and tongue surfaces. Streptococcus mutans, on the other hand, exhibited feeble or no adherence to cheek or tongue cells. Adherence of Escherichia coli to oral epithelial cells was also studied. The ability of strains of E. coli to adhere to cheek and tongue cells correlated solely with the presence of cell surface substances, probably pili. These observations, made on infants at the critical moment of their developing flora, strengthen the hypothesis that the ability of bacteria to adhere to surfaces is an important determinant of their ecological place in the oral microflora.  相似文献   

8.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The approximately 55-kDa protein was identified as beta2-glycoprotein I (beta2GPI) by Western blotting. Despite the high affinity of beta2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, beta2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

9.
Summary Electron microscopic studies have been made of the epithelial reticular cells of the thymus in mice of both sexes ranging in age from 5 to 8 weeks. The epithelial cells generally have long cytoplasmic processes by which they are interconnected and form a network throughout the organ. The processes adhere tightly to one another by desmosomes. At the surface of the organ the processes constitute a thin sheet, and a basement membrane is discernible close and parallel to the free surface of the epithelial sheet. In the cortex the meshes of the epithelial reticulum are filled with numerous lymphoid cells and relatively few mesenchymal reticular cells. The epithelial cells in the cortex are characterized by their slender cytoplasmic processes and by the presence of large round vesicles which contain coarsely granulated, dense material. By the presence of the vesicles as well as desmosomes at junctions of the cytoplasmic processes the epithelial cells can be distinguished from other cells. For comparison the cytological characteristics of the mesenchymal reticular cells are also described. In the medulla two types — reticular and hypertrophic — of epithelial cells are recognized. The cells of reticular type are irregularly stellated in shape with extended cytoplasmic processes. Their cytoplasm often contains considerable amounts of fine filaments in bundles. Due to the relative abundance of free ribonucleoprotein particles and other cytoplasmic components, the cytoplasm appears relatively electronopaque as compared with that of the cells of the other type. The plasma membrane of the cells of reticular type sometimes invaginates into the cytoplasm to enclose a lumen which contains substance of low density and sometimes fine filaments. A basement membrane-like layer is discernible close to the infolded plasma membrane in the lumen. The cells of hypertrophic type are relatively large and round with a few shorter cytoplasmic processes. They are characterized by the abundance of the smooth endoplasmic reticulum which appears as vesicle or sac of small size. These cells often possess peculiar vesicles the wall of which is provided with microvilli projecting into the lumen. Some of these vesicles carry cilia on their wall in addition to the microvilli. The cells of hypertrophic type often undergo degeneration. The degenerating cells are concentrically surrounded by a few neighboring cells of both hypertrophic and reticular types, and Hassall's corpuscles are formed.  相似文献   

10.
We studied the interaction of large unilamellar liposomes carrying different surface charges with rat Kupffer cells in maintenance culture. In addition to 14C-labeled phosphatidylcholine, all liposome preparations contained either 3H-labeled inulin or 125I-labeled bovine serum albumin as a non-degradable or a degradable aqueous space marker, respectively. With vesicles carrying no net charge, intracellular processing of internalized liposomes caused nearly complete release of protein label into the medium in acid-soluble form, while phospholipid label was predominantly retained by the cells, only about one third being released. The presence of the lysosomotropic agent, ammonia, inhibited the release of both labels from the cells. At 4 degrees C, the association and degradation of the vesicles were strongly reduced. These results are very similar to what we reported on negatively charged liposomes (Dijkstra, J., Van Galen, W.J.M., Hulstaert, C.E., Kalicharan, D., Roerdink, F.H. and Scherphof, G.L. (1984) Exp. Cell Res. 150, 161-176). The interaction of both types of vesicles apparently proceeds by adsorption to the cell surface followed by virtually complete internalization by endocytosis. Similar experiments with positively charged vesicles indicated that only about half of the liposomes were taken up by the endocytic route, the other half remaining adsorbed to the cell-surface. Attachment of all types of liposomes to the cells was strongly dependent on the presence of divalent cations; Ca2+ appeared to be required for optimal binding. Neutral liposomes only slightly competed with the uptake of negatively charged vesicles, both at 4 degrees and 37 degrees C, whereas negatively charged small unilamellar vesicles and negatively charged latex beads were found to compete very effectively with the large negatively charged liposomes. Neutral vesicles competed effectively for uptake with positively charged ones. These results suggest that neutral and positively charged liposomes are largely bound by the same cell-surface binding sites, while negatively charged vesicles attach mainly to other binding sites.  相似文献   

11.
Summary Colloidal gold probes were used to study the distribution of peanut agglutinin binding sites and the deposition of extracellular fibronectin and type IV collagen in cultured human breast cells grown on type I collagen gels. Qualitative analysis was performed at the ultrastructural level and appraised in relation to the possible role of peanut agglutinin, fibronectin and type IV collagen as functional markers for distinguishing cell types using this methodology.Peanut agglutinin bound to the surface of cuboidal epithelial cells but not on basal, putative myoepithelial cells in the cell islands, suggesting that it may be a useful functional marker. The binding on the epithelial cells was markedly increased by pre-treatment of the cells with neuraminidase. No correlation was seen between the amount of binding and either the surface topography or cellular ultrastructure.Fibronectin and type IV collagen were demonstrated on the fibrillar network left on the collagen gels after removal of the cell sheet. Any cells still adhering to the gel surface showed no evidence of gold probe binding on their upper surfaces. Examination of the under surfaces of the cell sheet showed gold probe binding equivalent to that found on the gels under the cells. However, it was not proven conclusively which cells produce the fibronectin and type IV collagen.  相似文献   

12.
Elemental surface concentration ratios N/C, O/C, and P/C of fibroblasts, HELA epithelial cells, and smooth muscle cells, prior to and after washing in the absence or presence of serum proteins, were determined by X-ray photoelectron spectroscopy. Cell surfaces appeared to adsorb hardly any serum proteins, and the relatively high P/C, as compared to N/C and O/C, elemental surface concentration ratio indicated that the cell surfaces consisted mainly of the phospholipid bilayer, with little or no proteins present. The lack of adsorption of serum proteins to the cell surfaces seems at odds with the common notion that cells require adhesive proteins in order to adhere and spread. However, the adsorption behavior of cellularly produced proteins may be completely different, particularly since they seem to be able to displace adsorbed serum proteins from biomaterials surfaces. Interestingly, only HELA epithelial cells (a tumor cell line) appeared to adsorb a very small amount of proteins.  相似文献   

13.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The ∼55-kDa protein was identified as β2-glycoprotein I (β2GPI) by Western blotting. Despite the high affinity of β2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, β2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

14.
O S Zakharova 《Tsitologiia》1976,18(11):1311-1314
Central cells of the normal epithelial sheet are sparsely covered by microvilli. Numerous microvilli were seen in the regions of intercellular contacts. Marginal cells of sheets had a finely developed lamellar cytoplasm (lameloplasm) with smooth upper surface at their free margins. A transformed cell line (MPTR) resembled normal parent cells by its ability to form monolayered sheets in cultures. More microvilli of increased length appeared on the upper surface of central MPTR cells. The normal structure of lamelloplasm was changed at the free edge of the MPTR sheets. It is suggested that abnormal cell attachment to the substratum may be responsible for the altered cell surface morphology (increased length of microvilli, defective, structure of lamelloplasm) in the MPTR cultures.  相似文献   

15.
Elemental surface concentration ratios N/C,O/C, and P/C of fibroblasts, HELA epithelial cells, and smooth muscle cells, prior to and after washing in the absence or presence of serum proteins, were determined by X-ray photoelectron spectroscopy. Cell surfaces appeared to adsorb hardly any serum proteins, and the relatively high P/C, as compared to N/C and O/C, elemental surface concentration ratio indicated that the cell surfaces consisted mainly of the phospholipid bilayer, with little or no proteins present. The lack of adsorption of serum proteins to the cell surfaces seems at odds with the common notion that cells require adhesive proteins in order to adhere and spread. However, the adsorption behavior of cellularly produced proteins may be completely different, particularly since they seem to be able to displace adsorbed serum proteins from biomaterials surfaces. Interestingly, only HELA epithelial cells (a tumor cell line) appeared to adsorb a very small amount of proteins.  相似文献   

16.
Neisseria gonorrhoeae has a repertoire of up to 11 opacity-associated (Opa) proteins that are adhesins. Most Opa proteins adhere to CEACAM antigens and when CEACAM molecules are present on the surface of transfected epithelial cells their binding by Opa is thought to induce invasion of these cells by gonococci. In this study, we investigated whether several malignant epithelial cell lines, normal cervical and fallopian tube epithelial cell cultures, as well as normal fallopian tube tissue express several of the CEACAM molecules, and whether gonococci use these molecules for adherence and invasion of these female genital epithelial cells. A primary cervical cell culture and metastatic cervical cell line ME180 both expressed CEACAM as shown by whole cell ELISA and flow cytometry, and increased the surface expression of total CEACAM during incubation with Opa+ gonococci. Opa+ gonococci both adhered to and invaded these cells; CEACAM-specific monoclonal antibody (MAb) partially abolished this interaction. Two primary fallopian epithelial tube cell cultures, a primary cervical cell culture and two malignant cell lines, HEC-1-B and HeLa, did not express CEACAM nor was CEACAM mRNA present. No evidence of either intracellular or secreted extracellular CEACAM was found with HEC-1-B and HeLa cells. Opa+ gonococci both adhered to and invaded CEACAM non-expressing cells; however, Opa+ gonococcal association with these non-expressing cell lines could not be inhibited with CEACAM-specific MAb. These data show that CEACAM is not always expressed on female genital epithelial cells and is not essential for gonococcal adherence and invasion. However, when CEACAM is expressed, Opa+ gonococci exploit it for the adherence to and invasion of these cells.  相似文献   

17.
We have shown previously that the diphtheria toxin transmembrane domain (T) may function as a membrane anchor for soluble proteins fused at its C-terminus. Binding to membranes is triggered by acidic pH. Here, we further characterized this anchoring device. Soluble proteins may be fused at the N-terminus of the T domain or at both extremities, without modifying its membrane binding properties. This allows one to choose the orientation of the protein to be attached to the membrane. Maximum binding to the cell surface is reached within 1 h. Anchoring occurs on cells previously treated with proteinase K, suggesting that T interacts with the lipid phase of the membrane without the help of cell surface proteins. Binding does not permeabilize cells or affect cell viability, despite the fact that it permeabilizes liposomes and alters their structure. When attached to L929 fibroblasts, the proteins are not internalized and remain displayed at their surface for more than 24 h. When bound to K562 myeloid cells, the molecules are internalized and degraded. Thus, depending on the cell type, soluble proteins may be anchored to the surface of cells by the T domain for an extended time or directed towards an internalization pathway.  相似文献   

18.
Surface plasmon resonance (SPR) has become one of the most important techniques for studying macromolecular interactions. The most obvious advantages of SPR over other techniques are: direct and rapid determination of association and dissociation rates of binding process, no need for labelling of protein or lipids, and small amounts of sample used in the assay (often nM concentrations of proteins). In biochemistry, SPR is used mainly to study protein-protein interactions. On the other hand, protein-membrane interactions, although crucial for many cell processes, are less well studied. Recent advances in the preparation of stable membrane-like surfaces and the commercialisation of sensor chips has enabled widespread use of SPR in protein-membrane interactions. One of the most popular is Biacore's L1 sensor chip that allows capture of intact liposomes or even subcellular preparations. Lipid specificity of protein-membrane interactions can, therefore, be easily studied by manipulating the lipid composition of the immobilised membrane. The number of published papers has increased steadily in the last few years and the examples include domains or proteins that participate in cell signalling, pore-forming proteins, membrane-interacting peptides, coagulation factors, enzymes, amyloidogenic proteins, prions, etc. This paper gives a brief overview of different membrane-mimetic surfaces that can be prepared on the surface of SPR chips, properties of liposomes on the surface of L1 chips and some selected examples of protein-membrane interactions studied with such system.  相似文献   

19.
OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis   总被引:1,自引:0,他引:1  
For cytosolic delivery of liposomes containing macromolecular drugs, such as proteins or nucleic acids, it would be beneficial to bypass endocytosis to prevent degradation in the lysosomes. Recent reports pointed to the possibility that coupling of TAT-peptides to the outer surface of liposome particles would enable translocation over the cellular plasma membrane. Here, we demonstrate that cellular uptake of TAT-liposomes occurs via endocytosis rather than plasma membrane translocation. The coupling of HIV-1 derived TAT-peptide to liposomes enhances their binding to ovarian carcinoma cells. The binding was inhibited by the presence of heparin or dextran sulfate, indicating that cell surface proteoglycans are involved in the binding interaction. Furthermore, living confocal microscopy studies revealed that binding of the TAT-liposomes to the plasma membrane is followed by intracellular uptake in vesicular structures. Staining the endosomes and lysosomes demonstrated that fluorescent liposomal labels are present within the endosomal and lysosomal compartments. Furthermore, incubation at low temperature or addition of a metabolic or an endocytosis inhibitor blocked cellular uptake. In conclusion, coupling TAT-peptide to the outer surface of liposomes leads to enhanced endocytosis of the liposomes by ovarian carcinoma cells, rather than direct cytosolic delivery by plasma membrane translocation.  相似文献   

20.
Abstract

In this contribution we describe and discuss (mostly published) experiments providing evidence favoring a decisive role of opsonizing plasma proteins in the removal of liposomes from the vascular compartment. Our conclusion is that cells will only bind and take up liposomes if they are anatomically accessible for the liposomes and if, in addition, they possess (specific) receptors for one or more proteins adsorbing to the liposomal surface. The relative contribution of each cell type fulfilling these criteria to over-all liposome clearance is dictated by the total number of cells in that population, the density of the receptor(s) involved, the affinity of those receptors for their respective ligands and the localization in the vascular system. It is concluded that only a few cell populations meet the criteria. Most are excluded because of inaccessibility while of the accessible ones several lack the proper opsonin receptors for significant liposome uptake. The significance of localization in the vasculature is illustrated by the hepatocytes whose accessibility is limited by the fenestrations in the endothelial lining of the liver sinusoids. The opsonin concept is extrapolated to cells other than macrophages; for example, the existence of hepatocyte-specific opsonins is proposed in order to explain the efficient uptake of small liposomes by this cell population. Because of their virtually complete lack of participation in plasma elimination of liposomes, some readily accessible cell types, such as the circulating blood cells and the vascular endothelial cells, are proposed to lack appropriate receptors. According to the views developed in this contribution the specialty of cells involved in liposome clearance therefore lies in the condition that they possess one or more receptors for plasma-derived proteins that spontaneously adsorb to the liposomal surface. One possible exception to the opsonin-determined concept is the fate of phosphatidylserine-containing liposomes. These may be cleared without or even in spite of involvement of opsonins, by virtue of a PS-specific receptor on macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号