首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
目的:研究葛根素是否可对抗高糖引起的血管低反应性,并探讨其作用机制。方法:采用血管环离体灌流装置,观察SD大鼠胸主动脉环的收缩反应;测定主动脉胆红素生成量反映血红素加氧酶-1(heme oxygenase-1,HO-1)的活性。结果:①与空白对照组(含11 mmol/L葡萄糖)相比,经44 mmol/L葡萄糖(高糖)孵育血管4 h后,主动脉环对苯肾上腺素(PE)引起的血管收缩反应下降;且该作用通过内皮依赖性途径实现。②葛根素(10-10~10-8mol/L)与高糖联合孵育,可剂量依赖性地改善高糖诱导的血管PE收缩反应的下降。③葛根素孵育血管后可引起血管HO-1活性增高;用ZnPP抑制HO-1的活性后,葛根素抗高糖损伤的作用被取消。结论:葛根素具有对抗高糖引起的血管收缩功能下降的作用,其机制可能是通过诱导HO-1活性增加实现的。  相似文献   

2.
研究自发性高血压大鼠(spontanously hypertensive rat,SHR)离体血管环对G蛋白偶联受体APJ的内源性配体apelin-13的血管收缩与舒张反应及其与一氧化氮(NO)和ERK1/2通路关系.采用离体血管环体外灌流方法用Power-Lab生物信息采集仪检测血管环的张力.实验分组如下:新福林(Phenylephrine,PE)组,乙酰胆碱(acetylcholine,Ach)组,apelin-13组,apelin-13 + PE组,apelin-13 + Ach组,PD98059(ERK1/2抑制剂) + PE组,PD98059 + Ach组,LNNA(L-nitro-arginine,硝基左旋精氨酸,一氧化氮合酶抑制剂) + PE组,LNNA+Ach组,apelin-13(预孵育) + PD98059 + PE组,apelin-13(预孵育)+PD98059+ Ach组,apelin-13(预孵育) + LNNA + PE组和apelin-13(预孵育) + LNNA + Ach组,以WKY大鼠血管环为对照组.培养大鼠血管平滑肌细胞,Western blot检测ERK1/2蛋白表达.结果显示:a.apelin-13对于有内皮的血管表现出浓度依赖性舒张作用,血管舒张百分比SHR < WKY大鼠,而对于去除内皮血管,apelin-13则表现出收缩血管的作用,且收缩张力SHR>WKY大鼠,apelin-13预孵育,能减少SHR和WKY大鼠血管对新福林的缩血管反应性,增加对乙酰胆碱的舒张反应性;b.NOS抑制剂LNNA阻断NO形成后,血管环对apelin-13的舒张反应明显抑制,且SHR组较WKY组对apelin的舒张反应减少更明显,提示apelin-13的舒血管效应至少部分依赖NO通路,而SHR高血压大鼠NO通路障碍减弱了apelin对血管的舒张作用;c.ERK1/2抑制剂PD98059预孵育后血管环对apelin-13表现出浓度依赖性的收缩,与去除内皮后apelin-13的收缩血管效应趋势一致,血管收缩张力SHR>WKY大鼠,PD98059逆转了apelin-13引起的血管舒张效应;d.Apelin-13促大鼠VSMCs ERK1/2磷酸化增加并呈剂量依赖性和时间依赖性,ERK1/2抑制剂PD98059可以减少apelin-13诱导ERK1/2的磷酸化.结果表明,自发性高血压大鼠离体血管环对apelin-13舒张反应性降低, NO通路和ERK1/2通路介导了apelin-13的舒张血管作用.  相似文献   

3.
为探讨心力衰竭诱导的血管舒缩功能紊乱的相关机制,本实验对心梗后大鼠慢性心力衰竭(chronic heart failure,CHF)模型胸主动脉血管环的舒缩功能变化及可能的病理学机制进行了研究。将Sprague-Dawley大鼠随机分为两组:假手术(sham)组和慢性心衰(CHF)组。通过冠脉结扎法制作大鼠CHF模型。手术10周后,检测大鼠血流动力学指标及相关参数,之后迅速取出心脏并称重,TTC染色法检测心梗面积。制备大鼠胸主动脉环,利用敏感的肌张力描记技术,比较sham组和CHF组胸主动脉环的舒缩功能,观察血管环对KCl、CaCl2、苯肾上腺素(phenyle phrine,PE)和咖啡因(caffeine)的收缩反应以及对乙酰胆碱(acetylcholine,ACh)的舒张反应。并进一步研究一氧化氮合酶(nitricoxide synthase,NOS)抑制剂N-硝基-L-精氨酸甲酯(N-nitrl-L-arginine methylester,L-NAME)和非选择性环氧合酶(cyclooxy genase,COX)抑制剂吲哚美辛(indomethacin,Indo)对两组胸主动脉环ACh的反应曲线的影响。结果显示:(1)与sham组相比,CHF组大鼠胸主动脉环对血管收缩剂KCl(5~100mmol/L)和PE(1×10-8~3×10-4mol/L)的反应性明显提高,对血管舒张剂ACh(1×10-12~1×10-4mol/L)的反应性显著性降低(P0.01,P0.05);(2)L-NAME(1mmol/L)预处理后,CHF组血管对ACh(1×10-7~1×10-4mol/L)介导的内皮依赖性收缩明显增强(P0.05),加入Indo(10μmol/L)后该现象消失;(3)与Indo未处理组相比,Indo(10μmol/L)预处理后,CHF组血管对ACh(1×10-12~1×10-4mol/L)介导的舒张反应明显增强(P0.05);(4)在无钙K-H液中,与sham组相比,CHF组血管对CaCl2(1×10-4~3×10-2mol/L)介导的钙依赖性收缩曲线明显左移(P0.05);caffeine(30mmol/L)诱导的血管收缩未见显著性变化。以上结果表明,CHF大鼠的胸主动脉血管环收缩异常与内皮功能障碍有关,其机制可能是通过血管内皮细胞COX途径提高内皮收缩因子,和(或)通过电压依赖性钙通道增加外钙流入引起血管收缩性能提高。  相似文献   

4.
为研究CYP4A抑制剂HET0016对小鼠离体主动脉血管张力的影响,对雄性C57BL/6J小鼠进行脱臼处死后,取主动脉并剪成3~4 mm长的血管环,固定于微血管测定仪的浴槽内,分别用高钾溶液(KCl 60 mmol/L)和去氧肾上腺素(Phe 1μmol/L)进行血管功能性检测,发现二者均能让离体主动脉环产生持续性收缩;然后采用累积给药法观察1μmol/L Phe处理组、60 mmol/L高钾处理组、eNOS抑制剂L-NAME(100μmol/L)和L-钙通道阻滞剂nifedipine(1μmol/L)单独或共同孵育后Phe(1μmol/L)预收缩处理组中不同浓度HET0016对小鼠离体主动脉环张力的影响,并探讨其可能的作用机制。结果发现,高浓度的HET0016可以舒张高钾和Phe预收缩的内皮完整的主动脉环;对于L-NAME单独孵育后Phe预收缩的内皮完整的主动脉环,只有高浓度的HET0016有显著舒张作用;而对于nifedipine单独孵育以及L-NAME和nifedipine共同孵育后Phe预收缩的主动脉环,HET0016的舒张作用呈明显的浓度依赖性。这些结果显示,HET0016这种舒张作用是多通道的,呈部分的内皮依赖性,但也不是主要通过L-电压门控钙通道产生,只有在高浓度的情况下才开始影响L-电压门控钙通道。  相似文献   

5.
目的:研究HO-1的诱导剂是否可对抗H2O2引起的血管低反应性,并探讨其作用机制。方法:采用血管环灌流装置,观察胸主动脉环的收缩效应。结果:①SD大鼠腹腔注射高铁血红素后,主动脉HO-1活性和血中CO含量增高;同时,H2O2引起的血管收缩功能下降的现象明显改善。②KATP通道阻断剂优降糖,而非GC抑制亚甲蓝,可取消高铁血红素的抗H2O2损伤的作用。③Hemin+H2O2组与单纯H2O2组的钙收缩曲线无明显差异。④无钙液中,高铁血红素可抑制H2O2引起的咖啡因和PE诱导的收缩幅度的下降。结论:诱导主动脉HO-1活性增加,可对抗氧化应激引起的血管收缩反应的低下,其机制可能是通过激活KATP通道,影响细胞内贮存钙的释放起作用。而与GC信号转导通路无关。  相似文献   

6.
乙醇对离体大鼠胸主动脉环的舒张作用及其机制   总被引:1,自引:0,他引:1  
目的:观察不同预张力下乙醇对离体大鼠胸主动脉环舒缩作用的影响及其机制.方法:采用离体血管灌流技术,设置不同预张力,记录乙醇作用下离体大鼠胸主动脉环的张力变化.结果:不同预张力下(1.0、1.5、2.0、2.5、3.0、3.5、4.0 g),乙醇(0.1‰、0.2‰、0.5‰、0.8‰、1.5‰、3.0‰、7.0‰.)对由KCl(6×10-2mol/L)或苯肾上腺素(phenylephrine,PE,10-6mol/L)预收缩的去内皮血管环产生舒张作用,其中3 g预张力下乙醇舒血管作用最明显;但对内皮完整血管环的舒张作用较弱;在3 g预张力下,最大效应浓度(3‰)的乙醇可使由KCl或PE预收缩的去内皮血管环的CaCl2量效曲线下移,最大反应显著降低:在3 g预张力下,肌浆网ryanodine受体阻断剂钌红(10-5mol/L)及三磷酸肌醇(trisphosphate inositol,IP3)受体阻断剂肝素(50 mg/L)预孵育可减弱乙醇对由PE预收缩的去内皮血管环的舒张作用.结论:乙醇具有不依赖内皮的舒血管作用,3 g预张力下舒血管作用最强.乙醇可能通过抑制血管平滑肌细胞膜上电压依从性和受体操作性钙通道,减少外钙内流,以及抑制肌浆网ryanodine受体和IP3受体途径,减少内钙释放而发挥舒血管作用.  相似文献   

7.
制备离体大鼠胸主动脉环,分有内皮组和去内皮组,采用离体血管灌流技术,观察胰岛素对去氧肾上腺素(PE)和氯化钾(KCl)预收缩的胸主动脉环收缩张力的影响。结果表明胰岛素对PE预收缩的胸主动脉环产生浓度依赖性的舒张作用,且有内皮组和去内皮组间无显著差异。胰岛素对KCl预收缩的胸主动脉环没有显著影响。胰岛素对PE预收缩的胸主动脉环有非内皮依赖性舒张作用。  相似文献   

8.
目的:探讨三种一氧化氮合酶抑制剂(NOSI)对盲肠结扎和穿孔法(CLP)败血症休克血流动力学改变及血管张力变化的影响.方法:采用CLP建立大鼠败血症休克模型,腹腔注射三种NOSI对CLP败血症休克进行干预;在体颈动脉插管和心室内导管术,测定血压和左心室动力学指标;用离体血管灌流方法,测定大鼠胸主动脉环的张力.结果:分别用三种NOSI可降低CLP败血症休克的死亡率,改善血压和左心室动力学指标;三种NOSI均能抑制CLP引起的去内皮主动脉环对苯肾上腺素(PE)和KCl的收缩反应性下降,并且iNOSI氨基胍(AMG)能够抑制CLP引起的去内皮主动脉环对细胞外钙的反应性降低;非选择性NOSI左旋硝基精氨酸甲酯(L-NAME)与nNOSI7-硝基吲唑(7-NI)均能抑制CLP引起的内皮完整主动脉环对苯肾上腺素(PE)和KCl的收缩反应性下降,但是三种NOSI均不能抑制CLP引起的内皮完整动脉环对细胞外钙的反应性降低.结论:三种NOSI均能改善CLP晚期败血症休克大鼠血流动力学和无内皮血管的收缩反应性,L-NAME和7-NI还可改善有内皮血管的收缩反应性.  相似文献   

9.
目的观察氢溴酸樟柳碱对离体大鼠颈总动脉的作用及相关机制。方法麻醉大鼠后,分离得到大鼠颈总动脉并制成血管环,采用离体血管环实验,观察氢溴酸樟柳碱在1×10~(-4)~5×10~(-3)mol·L~(-1)浓度范围内对KCl、苯肾上腺素(PHE)预收缩的内皮完整及去内皮血管环的作用;并观察预孵一氧化氮合酶抑制剂左旋硝基精氨酸甲酯(L-NAME)、不同的钾离子通道抑制剂格列本脲(Gly)、4-氨基吡啶(4-AP)、四乙基氯化铵(TEA)、BaCl_2对氢溴酸樟柳碱舒张血管环作用的影响;以2×10~(-3)mol·L~(-1)氢溴酸樟柳碱预孵血管环,观察其对以细胞内、外钙为收缩剂的血管收缩的作用,并探讨其舒张血管的机制。结果氢溴酸樟柳碱在体外1×10~(-4)~5×10~(-3)mol·L~(-1)浓度范围内能浓度依赖性舒张KCl和PHE预收缩的血管环,对KCl预收缩的血管环最大舒张幅度(Emax)为33. 97%±11. 53%,并在低浓度(1×10~(-4)~1×10~(-3)mol·L~(-1))收缩血管(P 0. 01,P 0. 05),对PHE预收缩的血管环的半数有效浓度为5. 61(3. 88,8. 10) mmol·L~(-1),Emax=47. 93%±18. 63%;对PHE预收缩的去内皮血管环,氢溴酸樟柳碱舒张血管的Emax无明显变化;而L-NAME、Gly、4-AP、TEA、BaCl_2对氢溴酸樟柳碱舒张PHE预收缩的血管环均无明显作用;在无Ca~(2+)溶液中,2×10~(-3)mol·L~(-1)氢溴酸樟柳碱可以显著增强PHE引起的血管环短暂收缩(P 0. 01)。结论氢溴酸樟柳碱能够在低浓度收缩离体大鼠颈总动脉环,并能浓度依赖性地舒张离体大鼠颈总动脉环,对血管的张力具有双向作用,且其机制与非内皮依赖途径及促肌浆网内钙释放相关。  相似文献   

10.
目的:探讨植物雌激素美皂异黄酮舒张血管的可能机制。方法:采用MedLab生物信号采集系统记录灌流大鼠胸主动脉环张力变化。结果:美皂异黄酮(10-9~10-4mol/L)对苯肾上腺素(PE,10-5mol/L)预收缩的内皮完整或去内皮血管环均产生浓度依赖性的舒张作用;美皂异黄酮对高浓度氯化钾(KCl,6×10-2mol/L)预收缩的血管环也产生浓度依赖性的舒张作用;四乙胺(TEA,5×10-3mol/L)或格列苯脲(3×10-6mol/L)预处理对美皂异黄酮诱导的去内皮动脉环舒张作用具有明显的抑制效应;在无钙液中,美皂异黄酮抑制PE引起的去内皮主动脉环的短暂收缩。结论:美皂异黄酮的非内皮依赖性血管舒张作用的机制可能涉及血管平滑肌细胞的Ca2+激活K+通道和ATP敏感性K+通道的激活,以及肌浆网内钙离子释放的减少。  相似文献   

11.
The effects of palmatine on isometric force and intracellular free calcium levels ([Ca2+]i) were determined in isolated rat arterial strips. Palmatine dose-dependently relaxed the contractile responses stimulated by phenylephrine (PE) in aortic strips. In contrast, it only partially relaxed aortic strips contracted by 51 mM KCl. Pretreatment with palmatine shifted the dose-response curves of PE both rightwards and downwards in a dose-dependent manner. When Ca2+-free solution and re-addition of Ca2+ were applied to assess PE-induced phasic and tonic contractions, palmatine was found to be effective in inhibiting both contractions. The effects of palmatine on intracellular calcium levels were measured with the bioluminescent calcium indicator aequorin in rat tail artery strips. Palmatine caused a concomitant, dose-dependent decrease in PE-activated isometric force and [Ca2+]i, resulting in small changes in the [Ca2+]i-force relationship. These results suggest that vasodilatory effect of palmatine was mediated by reducing [Ca2+]i as well as affecting [Ca2+]i sensitivity of the contractile apparatus. Palmatine-induced [Ca2+]i decreases appeared to involve decreases in both Ca2+ release from intracellular stores and Ca2+ influx through calcium channels.  相似文献   

12.
Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings. Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+. Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes.  相似文献   

13.
Coronary arterial tissues obtained from mammalian hearts are known to develop spontaneous phasic contractions. The aim of the present study was to investigate the vasodilatory effects of docosahexaenoic acid (DHA) on the rhythmic contractions of isolated human coronary arterial (HCA) preparations obtained from the recipient hearts of patients undergoing cardiac transplantation. Results from 8 hearts show that: (i) most HCA tissues displayed spontaneous rhythmic phasic contractions with a cycle length around 10 min in the absence or presence of PGF2alpha or elevated [K+]0 (20 mM); (ii) the rhythmic activity could be suppressed by a free fatty acid DHA (30 microM); (iii) high [K+]0 (20 and 80 mM) could induce sustained tonic contraction in addition to phasic contractions in HCA tissues, the tonic contraction could be antagonized by L-type Ca(2+) channel blockers or by DHA (depending on [K+]0); (iv) a digitalis substance ouabain also could induce tonic contraction and suppress phasic contraction; (v) in isolated HCA vascular smooth muscle cells, DHA increased the magnitude of outward voltage-gated K+ (IKV) currents and the inwardly rectifying IK1 currents. Enhancement of K+ currents could be related to vasorelaxation induced by DHA in HCA preparations. Further studies on the effects of DHA on various ionic currents and intracellular Ca(2+) transient are needed to clarify the Ca(2+)-dependent and the Ca(2+)-independent actions of DHA in HCA.  相似文献   

14.
The effect of apigenin, isolated from Apium graveolens, on the contraction of rat thoracic aorta was studied. Apigenin inhibited the contraction of aortic rings caused by cumulative concentrations of calcium (0.03-3 mM) in high potassium (60 mM) medium, with an IC50 of about 48 microM. After pretreatment it also inhibited norepinephrine (NE, 3 microM)-induced phasic and tonic contraction in a concentration (35-140 microM)-dependent manner with an IC50 of 63 microM. At the plateau of NE-induced tonic contraction, addition of apigenin caused relaxation. This relaxing effect of apigenin was not antagonized by indomethacin (20 microM) or methylene blue (50 microM), and still existed in endothelial denuded rat aorta or in the presence of nifedipine (2-100 microM). Neither cAMP nor cGMP levels were changed by apigenin. Both the formation of inositol monophosphate caused by NE and the phasic contraction induced by caffeine in the Ca(2+)-free solution were unaffected by apigenin. 45Ca2+ influx caused by either NE or K+ was inhibited by apigenin concentration-dependently. It is concluded that apigenin relaxes rat thoracic aorta mainly by suppressing the Ca2+ influx through both voltage- and receptor-operated calcium channels.  相似文献   

15.
To investigate the relationship between the oxytocin (OT) receptor (OTR) quantity and the contractile features systematically, we measured the mRNA expression levels of OTR and L-type Ca(2+) channel alpha(1C)-subunit (alpha(1C)) and examined the regulatory mechanisms of OT-induced phasic or tonic contractions of the longitudinal smooth muscles in mouse uteri. The mRNA expression of OTR in 19.0 G (19.0 days of gestation) was greater than those in nonpregnant phases, and that of alpha(1C) in estrus and 19.0 G was higher than in diestrus. OT-induced contractions sparsely occurred in diestrus. The OT-induced all-or-none-type phasic contractions at low concentrations were abolished by verapamil in both estrus and 19.0 G. OT-induced tonic contractions had similar pD(2) values in both estrus and 19.0 G. However, the magnitude in 19.0 G was much greater than that in estrus. The large tonic contractions also occurred in PGF(2alpha) receptor (FP) knockout mice in 19.0 G despite a small amount of OTR. Verapamil and Y-27632 partially inhibited the tonic contractions in 19.0 G. Cyclopiazonic acid-induced tonic contractions were reciprocally decreased with the increase in the OT-induced ones in 19.0 G. These results indicate that the phasic contractions are dependent on alpha(1C). The tonic contractions in 19.0 G are dependent on both Ca(2+) influxes via L-type Ca(2+) channels and store-operated Ca(2+) channels, and the force is augmented by the Rho signal pathway, which increases the Ca(2+) sensitivity. Thus the uterine contractions are mainly controlled by the modification of contractile signal machinery rather than simply by the OTR quantity.  相似文献   

16.
Previously, we reported that hyposmotic swelling evoked transient vascular smooth muscle cell (SMC) contraction that was completely abolished by L-type Ca(2+) channel blockers. In contrast, sustained contraction revealed in hyper- and isoosmotically-shrunken SMCs was insensitive to L-type channel blockers and was diminished in Ca(2+)-free medium by only 30-50%. Several research groups reported cell volume-dependent cytoskeleton network rearrangements. This study examines the role of cytoskeleton proteins in cell volume-dependent contraction of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat thoracic aorta. Hyperosmotic shrinkage and hyposmotic swelling were triggered by modulation of medium osmolality; isosmotic shrinkage was induced by VSMR transfer from hypo- to isosmotic medium. The relative content of globular (G) and fibrillar (F) actin was estimated by fluorescence microscopy. Hyperosmotic shrinkage and hyposmotic swelling led to elevation of the F-actin/G-actin ratio by 2.5- and 1.8-fold respectively. Contraction of shrunken and swollen VSMR was insensitive to modulators of microtubules such as vinblastine, colchicine and docetaxel. Microfilament disassembly by cytochalasin B resulted in dramatic attenuation of the maximal amplitude of contraction of hyperosmotically-shrunken and hyposmotically-swollen VSMR, and almost completely abolished the contraction triggered by isosmotic shrinkage. These data suggest that both L-type Ca(2+) channel-mediated contraction of swollen vascular SMC and Ca(2+)(o)-insensitive contractions of shrunken cells are triggered by reorganization of the microfilament network caused by elevation of the F-actin/G-actin ratio.  相似文献   

17.
Iloprost caused a concentration-dependent decrease in the response to noradrenaline in the rabbit isolated endothelium denuded rings from superior mesenteric artery but not thoracic aorta. Similar inhibition was obtained by verapamil using identical concentrations. In Ca(2+)-free EGTA containing medium noradrenaline both at lower and higher concentrations elicited a reduced contractile response and further addition of Ca2+ (2.5 mM) to the medium produced a second contraction in both mesenteric artery and aortic rings which was significantly and equally inhibited by iloprost and verapamil using identical concentrations in mesenteric artery but not in aortic rings. Prior addition of iloprost to the medium did not protect the inhibitory effect of phenoxybenzamine against noradrenaline-induced contraction. These results were taken as an evidence for the possible Ca2+ entry reducing effect of iloprost in mesenteric artery but not thoracic aorta. These results were also taken as an indirect evidence supporting the hypothesis that increased synthesis of prostacyclin by noradrenaline in the vascular wall may inhibit the contractile effect of the agonist by a (-) feedback mechanism mediated by Ca2+ entry into the vascular smooth muscle.  相似文献   

18.
The effects of mefloquine on the mechanical activity of the mouse isolated rectal smooth muscle was studied. Mefloquine (4.1x10-5 - 5.2x10-3M) when applied alone and separately exerted variable effects on the rectum. In some preparations, it caused slight phasic contractions while in others no response was elicited. When the external Ca(2+) was increased from 1.8mM to 300mM mefloquine produced phasic contractile activity which was abolished on return to normal 1.8mM suggesting that the contractile activity was due to extracellular Ca(2+) influx. Meflaquine [4.1x10-6M - 4.1x10-4M] caused contraction - dependent inhibition of KCL, Carbachol and CaCl2 [in depolarizing Tyrode Solution]. Mefloquine [2.1x10-4M] blocked KCL, but not carbachol contractions which were largely reversed by increasing [Ca2+]. The results show that mefloquine possesses anticholinergic and appreciable calcium channel blocking activity.  相似文献   

19.
The phasic contraction to phenylephrine of the rat isolated portal vein was investigated using functional studies. Phasic contractions to phenylephrine and caffeine could be produced after several minutes in Ca(2+)-free Krebs solution, which were inhibited by cyclopiazonic acid or ryanodine. The phenylephrine and caffeine contractions were abolished, however, within 10 min in Ca(2+)-free Krebs solution and by nifedipine. This indicated the Ca(2+) stores were depleted in the absence of Ca(2+) influx through voltage-gated channels. The phasic contraction to phenylephrine was also abolished by niflumic acid even in Ca(2+)-free Krebs solution. This showed that the response depended on intracellular Ca(2+) release stimulated directly by depolarization, resulting from opening of Ca(2+)-activated Cl(-) channels, but did not require Ca(2+) influx. In support of this, K(+)-induced phasic contractions were also produced in Ca(2+)-free Krebs solution. The phenylephrine but not K(+)-induced phasic contractions in Ca(2+)-free Krebs solution were inhibited by ryanodine or cyclopiazonic acid. This would be consistent with Ca(2+) release from more superficial intracellular stores (affected most by these agents), probably by inositol 1,4,5-trisphospate, being required to stimulate the phenylephrine depolarization.  相似文献   

20.
The effects of GS-389, a novel tetrahydroisoquinoline analog, on isolated rat and mouse thoracic aorta rings, were investigated. Both GS-389 and papaverine induced endothelium-independent, concentration-dependent relaxations of the rat and mouse aortae precontracted with phenylephrine (PE). The GS-389-induced inhibition of the contractile response to PE was noncompetitive. The initial phasic contraction to PE elicited in Ca(2+)-free media was also attenuated by pretreatment with GS-389, indicating that GS-389 may interfere with the release of intracellular Ca2+ and/or the effects of intracellular Ca2+ release. GS-389 potentiated the vasodilatory effects of isoproterenol and sodium nitroprusside in rat and mouse aortae. GS-389 significantly increased cGMP levels in the rat aorta and inhibited cGMP phosphodiesterase from the rabbit brain. Methylene blue, but not propranolol, inhibited the vasodilatory effect of GS-389. These results suggest that the vasorelaxant effect of GS-389 may be due, at least in part, to inhibition of cGMP metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号