首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The coordination of primase function within the replisome is an essential but poorly understood feature of lagging strand synthesis. By using crystallography and small-angle X-ray scattering (SAXS), we show that functional elements of bacterial primase transition between two dominant conformations: an extended form that uncouples a regulatory domain from its associated RNA polymerase core and a compact state that sequesters the regulatory region from the site of primer synthesis. FRET studies and priming assays reveal that the regulatory domain of one primase subunit productively associates with nucleic acid that is bound to the polymerase domain of a second protomer in trans. This intersubunit interaction allows primase to select initiation sites on template DNA and implicates the regulatory domain as a "molecular brake" that restricts primer length. Our data suggest that the replisome may cooperatively use multiple primases and this conformational switch to control initiation frequency, processivity, and ultimately, Okazaki fragment synthesis.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Several viruses utilize programmed ribosomal frameshifting mediated by mRNA pseudoknots in combination with a slippery sequence to produce a well defined stochiometric ratio of the upstream encoded to the downstream-encoded protein. A correlation between the mechanical strength of mRNA pseudoknots and frameshifting efficiency has previously been found; however, the physical mechanism behind frameshifting still remains to be fully understood. In this study, we utilized synthetic sequences predicted to form mRNA pseudoknot-like structures. Surprisingly, the structures predicted to be strongest lead only to limited frameshifting. Two-dimensional gel electrophoresis of pulse labelled proteins revealed that a significant fraction of the ribosomes were frameshifted but unable to pass the pseudoknot-like structures. Hence, pseudoknots can act as ribosomal roadblocks, prohibiting a significant fraction of the frameshifted ribosomes from reaching the downstream stop codon. The stronger the pseudoknot the larger the frameshifting efficiency and the larger its roadblocking effect. The maximal amount of full-length frameshifted product is produced from a structure where those two effects are balanced. Taking ribosomal roadblocking into account is a prerequisite for formulating correct frameshifting hypotheses.  相似文献   

13.
14.
The elongated cilia of the outer segment of rod and cone photoreceptor cells can contain concentrations of visual pigments of up to 5 mM. The rod visual pigments, G protein–coupled receptors called rhodopsins, have a propensity to self-aggregate, a property conserved among many G protein–coupled receptors. However, the effect of rhodopsin oligomerization on G protein signaling in native cells is less clear. Here, we address this gap in knowledge by studying rod phototransduction. As the rod outer segment is known to adjust its size proportionally to overexpression or reduction of rhodopsin expression, genetic perturbation of rhodopsin cannot be used to resolve this question. Therefore, we turned to high-throughput screening of a diverse library of 50,000 small molecules and used a novel assay for the detection of rhodopsin dimerization. This screen identified nine small molecules that either disrupted or enhanced rhodopsin dimer contacts in vitro. In a subsequent cell-free binding study, we found that all nine compounds decreased intrinsic fluorescence without affecting the overall UV-visible spectrum of rhodopsin, supporting their actions as allosteric modulators. Furthermore, ex vivo electrophysiological recordings revealed that a disruptive, hit compound #7 significantly slowed down the light response kinetics of intact rods, whereas compound #1, an enhancing hit candidate, did not substantially affect the photoresponse kinetics but did cause a significant reduction in light sensitivity. This study provides a monitoring tool for future investigation of the rhodopsin signaling cascade and reports the discovery of new allosteric modulators of rhodopsin dimerization that can also alter rod photoreceptor physiology.  相似文献   

15.
A 479-bp bi-directional promoter controls the expression of two genes (mas1′ and mas2′) that encode enzymes for the synthesis of the opine mannopine in plant tissues infected with Agrobacterium tumefaciens. This 5′ regulatory region (mas promoter) contains all the cis-acting elements involved in mediating the complex regulatory properties of these genes in plants. Using different mas promoter regions fused to a minimal 35S promoter (35SΔ108), we found that the regulatory properties of these divergent promoters result from the presence of orientation-dependent negative and positive regulatory regions. Some of these elements have the unusual property of acting as enhancers in one orientation and as silencers in the other. Using electrophoretic mobility shift analysis (EMSA), we showed that the functional mas promoter regions identified by fluorometric and histochemical assays for reporter gene activity in transgenic plants have the ability specifically to bind nuclear protein factors from Nicotiana tabacum, Phaseolus vulgaris, Solanum tuberosum, and Arabidopsis thaliana. Received: 7 May 1999 / Accepted: 5 August 1999  相似文献   

16.
We have developed a novel class of antisense agents, RNA Lassos, which are capable of binding to and circularizing around complementary target RNAs. The RNA Lasso consists of a fixed sequence derived from the hairpin ribozyme and an antisense segment whose size and sequence can be varied to base pair with accessible sites in the target RNA. The ribozyme catalyzes self-processing of the 5'- and 3'-ends of a transcribed Lasso precursor and ligates the processed ends to produce a circular RNA. The circular and linear forms of the self-processed Lasso coexist in an equilibrium that is dependent on both the Lasso sequence and the solution conditions. Lassos form strong, noncovalent complexes with linear target RNAs and form true topological linkages with circular targets. Lasso complexes with linear RNA targets were detected by denaturing gel electrophoresis and were found to be more stable than ordinary RNA duplexes. We show that expression of a fusion mRNA consisting of a sequence from the murine tumor necrosis factor-alpha (TNF-alpha) gene linked to luciferase reporter can be specifically and efficiently blocked by an anti-TNF Lasso. We also show in cell culture experiments that Lassos directed against Fas pre-mRNA were able to induce a change in alternative splicing patterns.  相似文献   

17.
The role of an A/T-rich positive regulatory region (P268, -444 to -177 from the translation start site) of the pea plastocyanin gene (PetE) promoter has been investigated in transgenic plants containing chimeric promoters fused to the -glucuronidase (GUS) reporter gene. This region enhanced GUS expression in leaves of transgenic tobacco plants when fused in either orientation to a minimal pea PetE promoter (-176 to +4) and in roots when fused in either orientation upstream or downstream of a minimal cauliflower mosaic virus 35S promoter (-90 to +5). The region was also able to enhance GUS expression in microtubers of transgenic potato plants when placed in either orientation upstream of a minimal class I patatin promoter (-332 to +14). Dissection of P268 revealed that cis elements responsible for enhancing GUS expression from the minimal PetE promoter were distributed throughout P268. Multiple copies of a 31 bp A/T-rich sequence from within P268 and of a 26 bp random A/T sequence were able to enhance GUS expression from the minimal PetE promoter, indicating that A/T-rich sequences are able to act as quantitative, non-tissue-specific enhancer elements in higher plants. Abbreviations: CaMV, cauliflower mosaic virus; GUS, -glucuronidase; HMG, high-mobility group; MAR, matrix-associated region; MU, methylumbelliferone; SAR, scaffold-associated region.  相似文献   

18.
19.
20.
Thioredoxin peroxidase (TPx) has been reported to dominate the defense against H(2)O(2), other hydroperoxides, and peroxynitrite at the expense of thioredoxin (Trx) B and C in Mycobacterium tuberculosis (Mt). By homology, the enzyme has been classified as an atypical 2-C-peroxiredoxin (Prx), with Cys(60) as the "peroxidatic" cysteine (C(P)) forming a complex catalytic center with Cys(93) as the "resolving" cysteine (C(R)). Site-directed mutagenesis confirms Cys(60) to be C(P) and Cys(80) to be catalytically irrelevant. Replacing Cys(93) with serine leads to fast inactivation as seen by conventional activity determination, which is associated with oxidation of Cys(60) to a sulfinic acid derivative. However, in comparative stopped-flow analysis, WT-MtTPx and MtTPx C93S reduce peroxynitrite and react with TrxB and -C similarly fast. Reduction of pre-oxidized WT-MtTPx and MtTPx C93S by MtTrxB is demonstrated by monitoring the redox-dependent tryptophan fluorescence of MtTrxB. Furthermore, MtTPx C93S remains stable for 10 min at a morpholinosydnonimine hydrochloride-generated low flux of peroxynitrite and excess MtTrxB in a dihydrorhodamine oxidation model. Liquid chromatography-tandem mass spectrometry analysis revealed disulfide bridges between Cys(60) and Cys(93) and between Cys(60) and Cys(80) in oxidized WT-MtTPx. Reaction of pre-oxidized WT-MtTPx and MtTPx C93S with MtTrxB C34S or MtTrxC C40S yielded dead-end intermediates in which the Trx mutants are preferentially linked via disulfide bonds to Cys(60) and never to Cys(93) of the TPx. It is concluded that neither Cys(80) nor Cys(93) is required for the catalytic cycle of the peroxidase. Instead, MtTPx can react as a 1-C-Prx with Cys(60) being the site of attack for both the oxidizing and the reducing substrate. The role of Cys(93) is likely to conserve the oxidation equivalents of the sulfenic acid state of C(P) as a disulfide bond to prevent overoxidation of Cys(60) under a restricted supply of reducing substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号