首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor extracellular matrix has an abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. Innovative design and development of safe and effective targeted contrast agents to these biomarkers would allow effective MR cancer molecular imaging with high spatial resolution. In this study, we synthesized a low molecular weight CLT1 peptide targeted Gd(III) chelate CLT1-dL-(Gd-DOTA)(4) specific to clotted plasma proteins in tumor stroma for cancer MR molecular imaging. CLT1-dL-(Gd-DOTA)(4) was synthesized by conjugating four Gd-DOTA monoamide chelates to a CLT1 peptide via generation 1 lysine dendrimer. The T(1) relaxivity of CLT1-dL-(Gd-DOTA)(4) was 40.4 mM(-1) s(-1) per molecule (10.1 mM(-1) s(-1) per Gd) at 37 °C and 1.5 T. Fluorescence imaging showed high binding specificity of CLT1 to orthotopic PC3 prostate tumor in mice. The contrast agent resulted in improved tumor contrast enhancement in male athymic nude mice bearing orthotopic PC3 prostate tumor xenograft at a dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for high-resolution MR molecular imaging of prostate tumor.  相似文献   

2.
Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and characterization in single liver MRI sections.  相似文献   

3.
Synthetic bifunctional probes based on [4,7-bis-carboxymethyl-10-(2-aminoethyl)-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic acid (DO3A-ethylamine) preloaded with gadolinium were prepared for applications in targeted magnetic resonance imaging (MRI) and optical imaging. A convenient route of synthesis is reported, which allowed conjugation of this probe with biomolecules for the preparation of model MR contrast agents for targeted imaging. The conjugated probes have the following interesting properties: GdDO3A-ethylamido-biotin (Gd-9) can be used for targeted imaging using an avidin-biotin system. The fluorescent probe GdDO3A-ethylthiourea-fluorescein (Gd-12) is a bimodal compound, which can be used for both MR and optical imaging. The precursors, DO3A-ethylamidopropyl-maleimide and DO3A-ethyl-isothiocyanate contain a highly reactive moiety, which can interact with free SH-terminals and N-terminals of biological molecules, respectively. In vitro MR relaxivity studies were performed at 300 MHz using different concentrations and chemical environments. MR relaxivity for ligand Gd-9 at pH 7.4, r1 was (3.32 +/- 0.03) s(-1) mM(-1) and r2 was (5.02 +/- 0.14) s(-1) mM(-1). For the mixture of Gd-9 with avidin, at pH 7.4, relaxivity increased linearly with the avidin concentration. A relaxivity enhancement of 45% for r1 and more than 400% for r2 with respect to the unbound biotinylated Gd3+ complex was found at a ratio of 4:1. MR relaxivity for ligand Gd-12, r1 was (5.36 +/- 0.05) s(-1) mM(-1) at pH 7.4. Fluorescence microscopy and spectroscopy of Gd-12-labeled 3T3 mouse fibroblasts showed a concentration-dependent intracellular uptake, accompanied by a slight dose-dependent increase in toxicity up to 150 microM. MR studies on labeled cells indicated a contrast enhancement in both T1- and T2-weighted images by the internalized compound, with the effect being more pronounced in T2-weighted images. Our results indicate that DO3A-ethylamine is a multipurpose precursor, from which various targeted contrast agents can be synthesized after a single-step conjugation with organic/bioorganic molecules.  相似文献   

4.
Molecular imaging is an important new direction in medical diagnosis; however, its success is dependent upon molecular probes that demonstrate selective tissue targeting. We report the design and chemical synthesis of a derivative of human amyloid-beta (Abeta) peptide that is capable of selectively targeting individual amyloid plaques in the brain of Alzheimer's disease transgenic mice after being intravenously injected. This derivative is based on the sequence of the first 30 amino acid residues of Abeta with asparagyl/glutamyl-4-aminobutane residues (N-4ab/Q-4ab) substituted at unique Asp and Glu positions and with Gd-DTPA-aminohexanoic acid covalently attached at the N-terminal Asp. The Gd[N-4ab/Q-4ab]Abeta30 peptide was homogeneous as shown by high-resolution analytical techniques with a mass of +/-4385 Da determined by electrospray ionization mass spectrometry. This diamine- and gadolinium-substituted derivative of Abeta is shown to have enhanced in vitro binding to Alzheimer's disease (AD) amyloid plaques and increased in vivo permeability at the blood-brain barrier because of the unique Asp/Glu substitutions. In addition, specific in vivo targeting to AD amyloid plaques is demonstrated throughout the brain of an APP, PS1 transgenic mouse after intravenous injection. Because of the magnetic resonance (MR) imaging contrast enhancement provided by gadolinium, this derivative should enable the in vivo MR imaging of individual amyloid plaques in the brains of AD animals or patients to allow for early diagnosis and also provide a direct measure of the efficacy of anti-amyloid therapies currently being developed.  相似文献   

5.
Surface modification of superparamagnetic contrast agents with HIV-1 tat peptide has emerged as a promising means for intracellular magnetic labeling and noninvasive tracking of a large number of cell types with MRI. To achieve efficient intracellular delivery of the nanoparticles, we investigated the effect on cellular uptake of superparamagnetic iron oxide particles by varying the number of attached tat peptides. First, we report here a modified P2T method in measuring the numbers of surface attachments per particle through disulfide linkage. The method was shown to have desirable simplicity and reproducibility. With the P2T method as a tool, conjugates with progressively higher ratios of peptide-to-particle were synthesized. We were able to demonstrate that higher numbers of tat peptide facilitate the cellular uptake of iron oxide nanoparticles in a nonlinear fashion. Cells labeled with these optimized preparations were readily detectable by MR imaging. The increase in sensitivity could allow in vivo tracking of 100-fold lower cell concentration than currently described.  相似文献   

6.
Previous studies have described a protective effect of atrial natriuretic peptide (ANP) against agonist-induced permeability in endothelial cells derived from various vascular beds. In the current study, we assessed the effects of the three natriuretic peptides on thrombin-induced barrier dysfunction in rat lung microvascular endothelial cells (LMVEC). Both ANP and brain natriuretic peptide (BNP) attenuated the effect of thrombin on increased endothelial monolayer permeability and significantly enhanced the rate of barrier restoration. C-type natriuretic peptide (CNP) had no effect on the degree of thrombin-induced monolayer permeability, but did enhance the restoration of the endothelial barrier, similar to ANP and BNP. In contrast, the non-guanylyl cyclase-linked natriuretic peptide receptor specific ligand, cyclic-atrial natriuretic factor (c-ANF), delayed the rate of barrier restoration following exposure to thrombin. All three natriuretic peptides promoted cGMP production in the endothelial cells; however, 8-bromo-cGMP alone did not significantly affect thrombin modulation of endothelial barrier function. ANP and BNP, but not CNP or c-ANF, blunted thrombin-induced RhoA GTPase activation. We conclude that ANP and BNP protect against thrombin-induced barrier dysfunction in the pulmonary microcirculation by a cGMP-independent mechanism, possibly by attenuation of RhoA activation.  相似文献   

7.
The purpose of this study was to design and prepare macromolecular contrast agents (CAs) with a precisely defined globular structure for MR angiography and tumor angiogenesis imaging. Generations 1 through 3 (Gd-DOTA-monoamide)-poly-L-lysine octasilsesquioxane dendrimers were prepared as nanoglobular MRI CAs. The nanoglobular Gd(III) chelates had a well-defined compact globular structure and high loading of Gd-DOTA-monoamide at their surface. The size of the G1, G2, and G3 nanoglobular MRI CAs was approximately 2.0, 2.4, and 3.2 nm, respectively. The T1 relaxivity of G1, G2, and G3 nanoglobular MRI CAs was approximately 6.4, 7.2, and 10.0 mM(-1) sec(-1) at 3T, respectively. The nanoglobular MRI CAs showed size-dependent contrast enhancement within the mouse vasculature, which gradually decayed to baseline after a 60 min session. The G3 nanoglobular CA resulted in more significant and prolonged vascular enhancement than the smaller nanoglobular agents at 0.03 mmol Gd/kg. The G3 agent also provided significant and prolonged contrast enhancement in the heart and vasculature at a dose as low as 0.01 mmol Gd/kg, 1/10th of the regular clinical dose. Significant enhancement was observed in tumor for all CAs. The nanoglobular CAs cleared via renal filtration and accumulated in the urinary bladder as shown in the dynamic MR images. The nanoglobular Gd(III) chelates are effective intravascular MRI CAs at substantially reduced doses. The nanoglobular MRI CAs are promising for further preclinical development for MR angiography and MR imaging of tumor angiogenesis.  相似文献   

8.
Impairment of gut epithelial barrier function is a key predisposing factor for inflammatory bowel disease, type 1 diabetes (T1D) and related autoimmune diseases. We hypothesized that maternal obesity induces gut inflammation and impairs epithelial barrier function in the offspring of nonobese diabetic (NOD) mice. Four-week-old female NOD/ShiLtJ mice were fed with a control diet (CON; 10% energy from fat) or a high-fat diet (HFD; 60% energy from fat) for 8 weeks to induce obesity and then mated. During pregnancy and lactation, mice were maintained in their respective diets. After weaning, all offspring were fed the CON diet. At 16 weeks of age, female offspring were subjected to in vivo intestinal permeability test, and then ileum was sampled for biochemical analyses. Inflammasome mediators, activated caspase-1 and mature forms of interleukin (IL)-1β and IL-18 were enhanced in offspring of obese mothers, which was associated with elevated serum tumor necrosis factor α level and inflammatory mediators. Consistently, abundance of oxidative stress markers including catalase, peroxiredoxin-4 and superoxide dismutase 1 was heightened in offspring ileum (P<.05). Furthermore, offspring from obese mothers had a higher intestinal permeability. Morphologically, maternal obesity reduced villi/crypt ratio in the ileum of offspring gut. In conclusion, maternal obesity induced inflammation and impaired gut barrier function in offspring of NOD mice. The enhanced gut permeability in HFD offspring might predispose them to the development of T1D and other gut permeability-associated diseases.  相似文献   

9.
Gadolinium ion (Gd(3+)) complexes are commonly used as magnetic resonance imaging (MRI) contrast agents to enhance signals in T(1)-weighted MR images. Recently, several methods to achieve cell-permeation of Gd(3+) complexes have been reported, but more general and efficient methodology is needed. In this report, we describe a novel method to achieve cell permeation of Gd(3+) complexes by using hydrophobic fluorescent dyes as a cell-permeability-enhancing unit. We synthesized Gd(3+) complexes conjugated with boron dipyrromethene (BDP-Gd) and Cy7 dye (Cy7-Gd), and showed that these conjugates can be introduced efficiently into cells. To examine the relationship between cell permeability and dye structure, we further synthesized a series of Cy7-Gd derivatives. On the basis of MR imaging, flow cytometry, and ICP-MS analysis of cells loaded with Cy7-Gd derivatives, highly hydrophobic and nonanionic dyes were effective for enhancing cell permeation of Gd(3+) complexes. Furthermore, the behavior of these Cy7-Gd derivatives was examined in mice. Thus, conjugation of hydrophobic fluorescent dyes appears to be an effective approach to improve the cell permeability of Gd(3+) complexes, and should be applicable for further development of Gd(3+)-based MRI contrast agents.  相似文献   

10.
A defect in mitochondrial activity contributes to many diseases. We have shown that monolayers of the human colonic T84 epithelial cell line exposed to dinitrophenol (DNP, uncouples oxidative phosphorylation) and nonpathogenic Escherichia coli (E. coli) (strain HB101) display decreased barrier function. Here the impact of DNP on macrophage activity and the effect of TNF-alpha, DNP, and E. coli on epithelial permeability were assessed. DNP treatment of the human THP-1 macrophage cell line resulted in reduced ATP synthesis, and, although hyporesponsive to LPS, the metabolically stressed macrophages produced IL-1beta, IL-6, and TNF-alpha. Given the role of TNF-alpha in inflammatory bowel disease (IBD) and the association between increased permeability and IBD, recombinant TNF-alpha (10 ng/ml) was added to the DNP (0.1 mM) + E. coli (10(6) colony-forming units), and this resulted in a significantly greater loss of T84 epithelial barrier function than that elicited by DNP + E. coli. This increased epithelial permeability was not due to epithelial death, and the enhanced E. coli translocation was reduced by pharmacological inhibitors of NF-kappabeta signaling (pyrrolidine dithiocarbamate, NF-kappabeta essential modifier-binding peptide, BAY 11-7082, and the proteosome inhibitor, MG132). In contrast, the drop in transepithelial electrical resistance was unaffected by the inhibitors of NF-kappabeta. Thus, as an integrative model system, our findings support the induction of a positive feedback loop that can severely impair epithelial barrier function and, as such, could contribute to existing inflammation or trigger relapses in IBD. Thus metabolically stressed epithelia display increased permeability in the presence of viable nonpathogenic E. coli that is exaggerated by TNF-alpha released by activated immune cells, such as macrophages, that retain this ability even if they themselves are experiencing a degree of metabolic stress.  相似文献   

11.
Recently, the small regions of some proteins suchas human immunodeficiency virus type 1 (HIV-1) Tat-(48-60) and Drosophila Antennapedia-(43-58) have beenreported to have the ability to translocate through the cellmembranes and carry the exogenous molecules into cyto-plasm and nucleus, and are called membrane-permeablepeptides (MPPs) [1–14]. Delivery of bioactive peptidesacross the blood-brain barrier is generally restricted to small(6 amino acids or less) or highly lipophilic peptides. But…  相似文献   

12.
Caco-2 cell permeability and stability assays were used as an in vitro model to study the intestinal epithelial transport and stability of two analogues of thyrotropin-releasing hormone (TRH; Pyr-His-Pro-NH2). Peptide 1 (Pyr-His-Pro-D-glucopyranuronamide) was more permeable across the Caco-2 cell monolayer compared with the permeability of the parent TRH peptide (Papp=5.10+/-1.89x10(-6) cm/s c.f. Papp=0.147+/-0.0474x10(-6) cm/s respectively). The permeability of peptide 1 was improved threefold by attaching a 2-aminooctanoic acid moiety to the N-terminus to form peptide 2 (2-aminooctanoic acid-Gln-His-Pro-D-glucopyranuronamide) (Papp=16.3+/-2.47x10(-6) cm/s). The half-life for both peptide 1 and peptide 2 was approximately 20 min in a homogenate of Caco-2 cells compared with the half-life of TRH which is approximately 3 min. It was concluded that the permeability of peptides 1 and 2 was enhanced because of their increased stability, while the higher permeability of peptide 2 compared with peptide 1 may be attributed to its increased lipophilicity which results in enhanced passive diffusion.  相似文献   

13.
Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can potentially improve the grading process in glioma if combined properly. In this study, Bayesian Network, which is a powerful and flexible method for probabilistic analysis under uncertainty, is used to combine features extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and MR spectroscopic imaging. The networks were constructed using K2 algorithm along with manual determination and distribution parameters learned using maximum likelihood estimation. The grading performance was evaluated in a leave-one-out analysis, achieving an overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver operating characteristic analysis given all available features observed in the total 56 patients. Results and discussions show that Bayesian Network is promising in combining features from multiple modalities of MRI for improved grading performance.  相似文献   

14.
We have previously reported that the uptake of colchicine and other drugs in Chinese hamster ovary (CHO) cells can be greatly enhanced by the addition of metabolic inhibitors such as cyanide (See, Y.P., Carlsen, S.A., Till, J.E. and Ling, V. (1974) Biochim. Biophys. Acta 373, 242-252). This has led us to postulate the presence of an active drug permeability barrier in these cells. In this paper we provide evidence for the dependence of this permeability barrier on intracellular ATP levels. Colchicine-resistant mutants of CHO cells exhibiting a reduced drug permeability, however, can maintain this drug permeability barrier at much lower ATP levels, suggesting that they possess an altered active drug permeability barrier. We have also observed a membrane-associated protein kinase-phosphoprotein phosphatase system in the isolated membranes of mutant and wild-type cells. Differences in the intrinsic protein phosphorylation patterns between the membranes of these cells have led us to conclude that the control of the drug permeability barrier may be mediated via the phosphorylation of at least two high molecular weight surface glycoproteins.  相似文献   

15.
目的:应用对比剂动力学时间分辨成像(Time Resolved Imaging of Contrast Kinetics,TRICKS)技术增强磁共振血管成像(MRangiography,MRA)及弥散加权成像(Diffusion Weighted Imaging,DWI)技术活体动态监测兔VX2肌肉肿瘤生物学生长与血管生成,探讨肿瘤血管生成与肿瘤生长的关系。方法:30只新西兰白兔,每只均在右后腿肌肉内接种VX2肿瘤细胞1×107建立肿瘤模型。分别在肿瘤接种后第4、7、10、13、16天(每个时间点6只)分别进行T1WI、T2WI、DWI、TRICKS动态增强MRA及T1WI增强延迟扫描,活体监测兔VX2肌肉肿瘤血管生成,肿瘤标本HE及CD31免疫组化染色进行验证。两位医师双盲法分别测量不同生长点肿瘤的长、短径及体积,并与大体病理标本比较;测定TRICKS增强动态MRA所能显示肿瘤血管的最小直径及形态变化;观察ADC值变化与肿瘤生长的关系。结果(:1)ADC值随着肿瘤体积的长大而逐渐增大。(2)MRI活体测定肿瘤大小与病理大体标本所测算肿瘤体积的差异无显著性。(3)TRICKS增强MRA动态显示肿瘤血管的最小...  相似文献   

16.
Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.  相似文献   

17.
Ascorbic acid improves endothelial barrier function by decreasing the permeability of endothelial cells cultured on semi-porous membrane filters. This decrease was not due to enhanced collagen synthesis and was mimicked by the collagen synthesis inhibitor ethyl-3,4-dihydroxybenzoic acid (EDHB). Since EDHB is known to chelate intracellular free iron, the effects of two membrane-permeant iron chelators were tested on endothelial permeability. Both 2,2′-dipyridyl and desferrioxamine decreased trans-endothelial permeability in a concentration-dependent manner. Increasing intracellular iron with a chelate of 8-hydroxyquinoline and ferric iron prevented effects of both EDHB and intracellular ascorbate. That EDHB and ascorbate did in fact chelate intracellular iron was supported by finding that they both decreased the cellular fluorescence quenching of the iron-sensitive dye Phen green SK. These results show that chelation of intracellular iron decreases endothelial barrier permeability and implicate this mechanism in the ability of EDHB and possibly intracellular ascorbate to tighten the endothelial barrier.  相似文献   

18.
Abstract: The blood–brain barrier (BBB) transport of a highly lipid-soluble peptide, [3H]cyclosporin, was studied in ketamine-anesthetized rats using the carotid artery injection technique. For comparison, peptide transport into rat liver was also assessed with the portal vein injection technique. Despite the high lipid solubility of this peptide (1-octanol/Ringer's partition coefficient = 991 ± 55), the extraction by rat brain was only 2.9 ± 0.5% in the presence of 80% human serum, and this value approximated the extraction for a poorly diffusible substance such as [3H]inulin, 2.0 ± 0.1%. In contrast, the hepatic extraction of [3H]cyclosporin was high, 84 ± 2%, in the presence of 80% human serum. The BBB transport of cyclosporin is markedly restricted owing to the combined effects of binding by serum proteins and a paradoxically low permeability of the BBB to the peptide.  相似文献   

19.
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.  相似文献   

20.
R Sankar  F R Domer  A J Kastin 《Peptides》1981,2(3):345-347
The effects of intravenously-injected alpha-MSH and MIF-1 (Pro-Leu-Gly-NH2) on the permeability of the blood-brain barrier (BBB) to a large protein and a small anion were studied using radioiodinated serum albumin (RISA) and 99mTc-labeled sodium pertechnetate. The permeability of the BBB to RISA was unaltered by either peptide. Permeability to the inorganic pertechnetate anion, however, was significantly increased by alpha-MSH but not by MIF-1 at doses known to evoke EEG and behavioral responses. The peptides did not cause a change in the systemic blood pressure. It is possible, therefore, that at least some CNS effects of peripherally administered peptides are exerted by alteration of the permeability of the BBB to other substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号