首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The design of inhibitors for anthrax lethal factor (LF) is currently of interest as an approach for the treatment of anthrax because LF plays a major role in the cytotoxicity of target cells. LF is a zinc-dependent metalloprotease that specifically cleaves the mitogen-activated protein kinase kinase (MKK) family. Current assay systems for the screening of LF inhibitor use the optimized synthetic peptide coupled with various kinds of fluorophores, enabling fast, sensitive, and robust assays suited to high-throughput screening. However, evidence suggests that the regions beside the cleavage site are also involved in specificity and proteolytic activity of LF. In the current study, we tried to develop a high-throughput assay for LF activity based on native substrate, mitogen-activated ERK kinase 1 (MEK1). The assay system relies on the enhanced chemiluminescence signal resulting from a specific antibody against the C-terminal region of native substrate. A glutathione-coated multiwell plate was used as a solid support to immobilize the native substrate by its N-terminal glutathione-S-transferase moiety. Immobilized substrate increases the specificity and sensitivity of LF-catalyzed substrate hydrolysis compared with the solution phase assay. This assay system might be used to discover a wide spectrum of anthrax inhibitors.  相似文献   

2.
3.
The anthrax toxin of the bacterium Bacillus anthracis consists of three distinct proteins, one of which is the anthrax lethal factor (LF). LF is a gluzincin Zn‐dependent, highly specific metalloprotease with a molecular mass of ~90 kDa that cleaves most isoforms of the family of mitogen‐activated protein kinase kinases (MEKs/MKKs) close to their amino termini, resulting in the inhibition of one or more signaling pathways. Previous studies on the crystal structures of uncomplexed LF and LF complexed with the substrate MEK2 or a MKK‐based synthetic peptide provided structure‐activity correlations and the basis for the rational design of efficient inhibitors. However, in the crystallographic structures, the substrate peptide was not properly oriented in the active site because of the absence of the catalytic zinc atom. In the current study, docking and molecular dynamics calculations were employed to examine the LF‐MEK/MKK interaction along the catalytic channel up to a distance of 20 Å from the zinc atom. This residue‐specific view of the enzyme‐substrate interaction provides valuable information about: (i) the substrate selectivity of LF and its inactivation of MEKs/MKKs (an issue highly important not only to anthrax infection but also to the pathogenesis of cancer), and (ii) the discovery of new, previously unexploited, hot‐spots of the LF catalytic channel that are important in the enzyme/substrate binding and interaction.  相似文献   

4.
Bacillus anthracis synthesizes two toxins composed of the three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). The cleavage of PA on the cell surface by the convertase furin leads to the translocation of LF and EF into the cytosol. We have investigated the cross-inhibitory activities of the furin inhibitors hexa-d-arginine amide (D6R) and nona-d-arginine amide (D9R), which block the proteolytic activation of PA; and of the LF inhibitor In-2-LF, a peptide hydroxamate. D6R and D9R inhibit LF with IC(50s) of 300 and 10microM, respectively; conversely, In-2-LF also inhibits furin (IC(50) 2microM). In-2-LF was efficiently cleaved by furin with the concomitant loss of inhibitory activity on both LF and furin. Incubation of In-2-LF with LF however generated a product that retained partial inhibitory activity against LF. Combined treatment of cells with D6R and In-2-LF enhanced protection against anthrax lethal toxin, indicating that combined administration of inhibitors could represent an effective therapeutic approach.  相似文献   

5.
The lethal factor (LF) of anthrax toxin is the toxic component of the exotoxin (lethal toxin) secreted by toxic strains of Bacillus anthracis. The lethal factor is a zinc-dependent metalloprotease that specifically cleaves the mitogen-activated protein kinase kinase (MAPKK) family of enzymes. We took advantage of this substrate specificity to develop an electrochemiluminescence (ECL) peptide cleavage assay. The ECL assay uses the stable ruthenium (Ru) metal chelate that, in the presence of tripropylamine, generates a light reaction triggered by the application of an electric potential. The Ru label is specifically incorporated into the C-terminal CYS residue of a synthetic peptide (23mer) containing the MAPKK2 cleavage sequence of LF. Streptavidin-coated paramagnetic beads were the solid phase and facilitated separation and characterization of the enzymatic reaction products based upon N-terminal biotinylation of the peptide substrate. Intact peptide bound via the biotin moiety generated high signal due to the Ru label, whereas binding of the cleaved peptide fragment devoid of Ru label reduced the ECL signal. The proposed assay provides a novel opportunity for the screening of potential therapeutics against anthrax.  相似文献   

6.
Wei D  Bu Z  Yu A  Li F 《BMB reports》2011,44(12):811-815
Inhalational anthrax is caused by B. anthracis, a virulent sporeforming bacterium which secretes anthrax toxins consisting of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease and is the main determinant in the pathogenesis of anthrax. Here we report the identification of a lead small-molecule inhibitor of anthrax lethal factor by screening an available synthetic small-molecule inhibitor library using fluorescence-based high-throughput screening (HTS) approach. Seven small molecules were found to have inhibitory effect against LF activity, among which SM157 had the highest inhibitory activity. All theses small molecule inhibitors inhibited LF in a noncompetitive inhibition mode. SM157 and SM167 are from the same family, both having an identical group complex, which is predicted to insert into S1' pocket of LF. More potent small-molecule inhibitors could be developed by modifying SM157 based on this identical group complex.  相似文献   

7.
Inhalation of anthrax spores rapidly develops into a deadly bacteraemia and toxaemia. Anthrax toxins include the lethal factor (LF), a mitogen-activated protein kinase (MAPK)-kinase-specific metalloprotease, which acts in the cell cytosol and plays a major part in anthrax pathogenesis. Recently, screening methods have led to the discovery of LF inhibitors that are membrane permeable. This will pave the way for design of novel anthrax therapeutics that are capable of inhibiting the metalloprotease activity of LF in vivo.  相似文献   

8.
The anthrax lethal factor (LF) is a Zn(2+)-endopeptidase specific for mitogen-activated protein kinase kinases (MAPKKs), which are cleaved within their N-terminal region. Much line of effort was carried out to elucidate the catalytic activity of LF for designing the inhibitor and to understand the cellular mechanism of its cytotoxicity. Current assay methods to analyze the LF activity have been based on a synthetic peptide, consisting of 15-20 residues around being cleaved. However, there are accumulating reports that the region distal to cleavage site is required for the LF-mediated proteolysis of substrate. In this study, we demonstrate the catalytic properties of LF, using the full-length native substrate, MEK. We described the catalytic properties of LF focused on the effects of the pH alteration, which was encountered during the endocytosis of lethal toxin, and of the requirement for metal ions. We present the first evidence that additional metal ions are required for the LF catalyzed hydrolysis of native substrate, and that the pH alteration causes a significant change of catalytic properties of LF.  相似文献   

9.
Lethal factor (LF), a zinc-dependent protease of high specificity produced by Bacillus anthracis, is the effector component of the binary toxin that causes death in anthrax. New therapeutics targeting the toxin are required to reduce systemic anthrax-related fatalities. In particular, new insights into the LF catalytic mechanism will be useful for the development of LF inhibitors. We evaluated the minimal length required for formation of bona fide LF substrates using substrate phage display. Phage-based selection yielded a substrate that is cleaved seven times more efficiently by LF than the peptide targeted in the protein kinase MKK6. Site-directed mutagenesis within the metal-binding site in the LF active center and within phage-selected substrates revealed a complex pattern of LF-substrate interactions. The elementary steps of LF-mediated proteolysis were resolved by the stopped-flow technique. Pre-steady-state kinetics of LF proteolysis followed a four-step mechanism as follows: initial substrate binding, rearrangement of the enzyme-substrate complex, a rate-limiting cleavage step, and product release. Examination of LF interactions with metal ions revealed an unexpected activation of the protease by Ca2+ and Mn2+. Based on the available structural and kinetic data, we propose a model for LF-substrate interaction. Resolution of the kinetic and structural parameters governing LF activity may be exploited to design new LF inhibitors.Anthrax is an infectious disease caused by the encapsulated, spore-forming bacterium Bacillus anthracis. Systemic forms of the disease, such as inhalational anthrax, are characterized by nonspecific early symptoms, rapid progression, and lethality approaching 100% (1). The lethality of inhalational anthrax is high even with antibiotic treatment and is caused by accumulation of secreted anthrax toxin (2), which consists of three proteins as follows: protective antigen (PA),2 lethal factor (LF), and edema factor. PA binds to membrane receptors, forms pore complexes, and translocates LF and edema factor into the host cell (3, 4). The PA·LF complex is known as the lethal toxin, a virulence factor with pleiotropic action that facilitates establishment of the B. anthracis infection. LF is a Zn2+-dependent metalloprotease related to the thermolysin family that cleaves mitogen-activated protein kinase kinases (5).Although the complete mechanism by which LF causes fatal intoxication is still unclear, inhibition of LF proteolytic activity may be an efficient means of preventing anthrax lethality. A better understanding of the LF catalytic mechanism will facilitate rational design and optimization of LF inhibitors with potential clinical applicability. Recent structural (6, 7), mechanistic (8), and in vivo studies (9, 10) of LF point to a sophisticated catalytic mechanism involving accurate recognition of multiple target substrates.Here we use substrate phage display and stopped-flow fluorimetry kinetics to examine both the substrate specificity and elementary steps of substrate processing by LF. Our data allow us to construct a working model of LF-substrate binding and cleavage.  相似文献   

10.
The design of polyvalent molecules, consisting of multiple copies of a biospecific ligand attached to a suitable scaffold, represents a promising approach to inhibit pathogens and oligomeric microbial toxins. Despite the increasing interest in structure-based drug design, few polyvalent inhibitors based on this approach have shown efficacy in vivo. Here we demonstrate the structure-based design of potent biospecific heptavalent inhibitors of anthrax lethal toxin. Specifically, we illustrate the ability to design potent polyvalent ligands by matching the pattern of binding sites on the biological target. We used a combination of experimental studies based on mutagenesis and computational docking studies to identify the binding site for an inhibitory peptide on the heptameric subunit of anthrax toxin. We developed an approach based on copper-catalyzed azide-alkyne cycloaddition (click-chemistry) to facilitate the attachment of seven copies of the inhibitory peptide to a β-cyclodextrin core via a polyethylene glycol linker of an appropriate length. The resulting heptavalent inhibitors neutralized anthrax lethal toxin both in vitro and in vivo and showed appreciable stability in serum. Given the inherent biocompatibility of cyclodextrin and polyethylene glycol, these potent well-defined heptavalent inhibitors show considerable promise as anthrax antitoxins.  相似文献   

11.
The anthrax lethal factor (LF) is a Zn2+ endopeptidase specific for mitogen-activated protein kinase kinases (MAPKKs), which are cleaved within their N termini. Here, the proteolytic activity of LF has been investigated using novel chromogenic MAPKK-derived peptide substrates, which allowed us to determine the kinetic parameters of the reaction. LF displayed maximal proteolytic activity at the pH and temperature values of the cell cytosol, which is its site of action. LF undergoes substrate inhibition, in keeping with the non-productive binding geometry of the MAPPK-2 N terminus to LF.  相似文献   

12.
重组炭疽致死因子的表达及生物活性分析   总被引:10,自引:2,他引:10  
使用分泌型表达质粒,实现了重组炭疽致死因子(rLF)在大肠杆菌周质腔中的分泌表达。表达量约占菌体总蛋白的4%。经过离子交换和凝胶过滤纯化,每升诱导培养物可获得约3mg电泳纯的rLF。蛋白N端测序表明,rLF序列与天然炭疽LF一致。体外细胞毒性试验亦显示rLF具有很好的生物活性。rLF的成功表达为今后研究LF的作用机理、发展新型炭疽疫苗、筛选针对炭疽致死毒素的抑制剂打下基础。  相似文献   

13.
Bacillus anthracis is the causative agent of anthrax. The major virulence factors are a poly-D-glutamic acid capsule and three-protein component exotoxin, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa), respectively. These three proteins individually have no known toxic activities, but in combination with PA form two toxins (lethal toxin or edema toxin), causing different pathogenic responses in animals and cultured cells. In this study, we constructed and produced rLF as a form of GST fusion protein in Escherichia coli. rLF was rapidly purified through a single affinity purification step to near homogeneity. Furthermore, we developed an in vitro immobilized proteolytic assay of LF under the condition containing full-length native substrate, MEK1, rather than short synthetic peptide. The availability of full-length substrate and of an immobilized LF assay could facilitate not only the in-depth investigation of structure-function relationship of the enzyme toward its substrate but also wide spectrum screening of inhibitor collections based on the 96-well plate system.  相似文献   

14.
An inhibitor of anthrax lethal toxin mediated cell death (1) was identified by a medium throughput cell-based screen. This compound was determined to specifically inhibit anthrax lethal factor (LF), and subsequent SAR studies produced an even more potent inhibitor (4). Mechanistic studies identified these agents as uncompetitive inhibitors of LF with Ki values of 3.0 and 1.7 microM, respectively, with good cell potency and low cytotoxicity.  相似文献   

15.
炭疽毒素及其细胞受体的研究进展   总被引:1,自引:0,他引:1  
炭疽毒素由 3种蛋白组成 :保护性抗原 (protectiveantigen ,PA)、致死因子 (lethalfactor,LF)和水肿因子 (edemafactor ,EF) .综述炭疽毒素研究的最新进展 .主要介绍炭疽毒素的关键致病因子———LF的结构与功能 ,炭疽毒素膜转运成分PA的结构及其受体 (anthraxtoxinreceptor ,ATR)和其cDNA克隆的结构 ,并讨论了在炭疽的治疗、预防和毒素在肿瘤治疗中的可能应用 .  相似文献   

16.
Protective antigen (PA) and lethal factor (LF) are the two components of anthrax lethal toxin. PA is responsible for interacting with cell receptors and for the subsequent translocation of LF inside the cell compartment. A re-engineered toxin comprised of PA and a fusion chimera LF/Pseudomonas exotoxin (FP59) is a promising choice for tumor cell surface targeting. We demonstrated, however, that in vitro in cell-free system and in cultured human colon carcinoma LoVo, fibrosarcoma HT1080 and glioma U251 cells membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves both the PA83 precursor and the PA63 mature protein. Exhaustive MT1-MMP cleavage of PA83 in vitro generates several major degradation fragments with an N-terminus at Glu40, Leu48, and Gln512. In cultured cells, MT1-MMP-dependent cleavage releases the cell-bound PA83 and PA63 species from the cell surface. As a result, MT1-MMP expressing cells have less PA63 to internalize. In agreement, our observations demonstrate that MT1-MMP proteolysis of PA makes the MT1-MMP-expressing aggressive invasive cells resistant to the cytotoxic effect of a bipartite PA/FP59 toxin. We infer from our studies that synthetic inhibitors of MMPs are likely to increase the therapeutic anti-cancer effect of anthrax toxin. In addition, our study supports a unique role of furin in the activation of PA, thereby suggesting that furin inhibitors are the likely specific drugs for short-term therapy of anthrax infection.  相似文献   

17.
Comparison of the anthrax toxin lethal factor (LF) amino acid sequence with sequences in the Swiss protein database revealed short regions of similarity with the consensus zinc-binding site, HEXXH, that is characteristic of metalloproteases. Several protease inhibitors, including bestatin and captopril, prevented intoxication of macrophages by lethal toxin. LF was fully inactivated by site-directed mutagenesis that substituted Ala for either of the residues (H-686 and H-690) implicated in zinc binding. Similarly, LF was inactivated by substitution of Cys for E-687, which is thought to be an essential part of the catalytic site. In contrast, replacement of E-720 and E-721 with Ala had no effect on LF activity. LF bound 65Zn both in solution and on protein blots. The 65Zn binding was reduced for several of the LF mutants. These data suggest that anthrax toxin LF is a zinc metallopeptidase, the catalytic function of which is responsible for the lethal activity observed in cultured cells and in animals.  相似文献   

18.
We report the synthesis of biodegradable polyvalent inhibitors of anthrax toxin based on poly-L-glutamic acid (PLGA). These biocompatible polyvalent inhibitors are at least 4 orders of magnitude more potent than the corresponding monovalent peptides in vitro and are comparable in potency to polyacrylamide-based inhibitors of anthrax toxin assembly. We have elucidated the influence of peptide density on inhibitory potency and demonstrated that these inhibitory potencies are limited by kinetics, with even higher activities seen when the inhibitors are preincubated with the heptameric receptor-binding subunit of anthrax toxin prior to exposure to cells. These polyvalent inhibitors are also effective at neutralizing anthrax toxin in vivo and represent attractive leads for designing biocompatible anthrax therapeutics.  相似文献   

19.
The virulent spore-forming bacterium Bacillus anthracis secretes anthrax toxin composed of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease that inactivates key signaling molecules, such as mitogen-activated protein kinase kinases (MAPKK), to ultimately cause cell death. We report here the identification of small molecule (nonpeptidic) inhibitors of LF. Using a two-stage screening assay, we determined the LF inhibitory properties of 19 compounds. Here, we describe six inhibitors on the basis of a pharmacophoric relationship determined using X-ray crystallographic data, molecular docking studies and three-dimensional (3D) database mining from the US National Cancer Institute (NCI) chemical repository. Three of these compounds have K(i) values in the 0.5-5 microM range and show competitive inhibition. These molecular scaffolds may be used to develop therapeutically viable inhibitors of LF.  相似文献   

20.
The anthrax lethal factor (LF) has a major role in the development of anthrax. LF is delivered by the protective antigen (PA) inside the cell, where it exerts its metalloprotease activity on the N-terminus of MAPK-kinases. PA+LF are cytotoxic to macrophages in culture and kill the Fischer 344 rat when injected intravenously. We describe here the properties of some polyphenols contained in green tea as powerful inhibitors of LF metalloproteolytic activity, and how the main catechin of green tea, (-)epigallocatechin-3-gallate, prevents the LF-induced death of macrophages and Fischer 344 rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号