首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A cell delivery system is increasing in use in many areas of cell and molecular biology and bio-medicine. This system is based on a number of naturally occurring protein motifs and/or sequences which show the remarkable ability to rapidly cross the mammalian cell membrane without compromising its structure or function. These so-called Protein Transduction Domains (PTDs) offer unprecedented advantages for intracellular delivery. These advantages include, but are not limited to, their applicability to all cell types (no cell type has yet been described which is not transduced by these PTDs), and the range of cargoes that can be transduced (including peptides, small proteins, full-length enzymes, DNA oligomers, peptide-nucleic acid oligomers, liposomes, and magnetic nanoparticles). Furthermore, the PTDs have been demonstrated to be suitable for in vivo delivery including delivery across the blood brain barrier, and have been shown to cross the plasma membrane rapidly and enter the cytoplasm and nuclear regions of the cell. In this review, the general properties of the most commonly used PTDs are described. The strategies currently being undertaken also highlight that improvements in membrane transduction are possible despite our lack of understanding of the exact biochemical and/or physical mechanisms of transduction. Recent examples of the range of potential applications are also discussed.  相似文献   

3.
Rapid and efficient delivery of imaging probes to the cell interior using permeation peptides has enabled novel applications in molecular imaging. Membrane permeant peptides based on the HIV-1 Tat basic domain sequence, GRKKRRQRRR, labeled with fluorophores and fluorescent proteins for optical imaging or with appropriate peptide-based motifs or macrocycles to chelate metals, such as technetium for nuclear scintigraphy and gadolinium for magnetic resonance imaging, have been synthesized. In addition, iron oxide complexes have been functionalized with the Tat basic domain peptides for magnetic resonance imaging applications. Herein we review current applications of permeation peptides in molecular imaging and factors influencing permeation peptide internalization. These diagnostic agents show concentrative cell accumulation and rapid kinetics and display cytosolic and focal nuclear accumulation in human cells. Combining methods, dual-labeled permeation peptides incorporating fluorescein maleimide and chelated technetium have allowed for both qualitative and quantitative analysis of cellular uptake. Imaging studies in mice following intravenous administration of prototypic diagnostic permeation peptides show rapid whole-body distribution allowing for various molecular imaging applications. Strategies to develop permeation peptides into molecular imaging probes have included incorporation of targeting motifs such as molecular beacons or protease cleavable domains that enable selective retention, activatable fluorescence, or targeted transduction. These novel permeation peptide conjugates maintain rapid translocation across cell membranes into intracellular compartments and have the potential for targeted in vivo applications in molecular imaging and combination therapy.  相似文献   

4.
The impermeable nature of the cell membrane to peptides, proteins, DNA and oligonucleotides limits the therapeutic potential of these biological agents. However, the recent discovery of short cationic peptides that cross the plasma membrane efficiently is opening up new possibilities for the intracellular delivery of such agents. These peptides are commonly referred to as protein transduction domains (PTDs) and are successfully used to transport heterologous proteins, peptides and other types of cargo into cells. Several recent reports have used the membrane transducing technology in vivo to deliver biologically active cargo into various tissues. This review discusses the structure of the most commonly used PTDs and how their ability to transduce membranes is used to regulate biological functions. It also considers future directions and the potential of this technology to move from the laboratory into the clinic.  相似文献   

5.
Intracellular delivery of glutathione S-transferase into mammalian cells   总被引:4,自引:0,他引:4  
Protein transduction domains (PTDs) derived from human immunodeficiency virus Tat protein and herpes simplex virus VP22 protein are useful for the delivery of non-membrane-permeating polar or large molecules into living cells. In the course of our study aiming at evaluating PTD, we unexpectedly found that the fluorescent-dye-labeled glutathione S-transferase (GST) from Schistosoma japonicum without known PTDs was delivered into COS7 cells. The intracellular transduction of GST was also observed in HeLa, NIH3T3, and PC12 cells, as well as in hippocampal primary neurons, indicating that a wide range of cell types is permissive for GST transduction. Furthermore, we showed that the immunosuppressive peptide VIVIT fused with GST successfully inhibits NFAT activation. These results suggest that GST is a novel PTD which may be useful in the intracellular delivery of biologically active molecules, such as small-molecule drugs, bioactive peptides, or proteins.  相似文献   

6.
Protein transduction domains (PTDs) are versatile peptide sequences that facilitate cell delivery of several cargo molecules including proteins. PTDs usually consist of short stretches of basic amino acids that can cross the plasma membrane and gain entry into cells. Traditionally, to assess PTD mediated protein delivery, PTD-fusion proteins have been used as purified proteins. To overcome the requirement for a protein purification step, we used a secretory signal peptide to allow PTD-CRE fusion proteins to be exported from transfected mammalian cells. PTD induced protein transduction into cells was assessed by a CRE-mediated recombination event that resulted in beta-galactosidase expression. Several PTDs were tested including the prototypic TAT, different TAT variants, Antp, MTS and polyarginine. A negative correlation was observed between the cationic charge on the PTD and the extent of secretion. Poor secretion was found when the PTD charge was greater than +5. One TAT-CRE protein variant had a 14-fold enhancement above CRE alone when added to cells in the presence of chloroquine. This PTD domain also enhanced gene expression after plasmid delivery. These data illustrate that some secreted PTD proteins may be useful reagents to improve protein delivery in mammalian systems and a novel approach to enhancing the response to DNA transfections.  相似文献   

7.
Direct targeting to the cytoplasm and nucleus using protein transduction domains (PTD) has been described to be efficient but non-cell-type-specific, and only has clinical relevance when the molecule is active exclusively in the diseased cell. The use of PTDs is an attractive mechanism to improve drug delivery. In this work, we designed recombinant proteins that contain epidermal growth factor as ligand to render uptake target cell-specific. We evaluated the potential of several PTDs to induce the cytosolic uptake of the catalytic domain of diphtheria toxin by measuring cytotoxicity. Although PTD-dependent membrane transfer is very low, the proteins exhibited concentration-dependent cytotoxic activity. Higher binding at 4 degrees C compared to 37 degrees C suggests that uptake by the PTDs MTS and TLM occurs via an endocytic pathway. Non-specific binding is predominantly a function of the PTD and greatly increases by substitution of a non-polar glycine with a negatively charged glutamate in the PTD HA2.  相似文献   

8.
Protein transduction domains (PTDs) are peptides that afford the internalization of cargo macromolecules (including plasmid DNA, proteins, liposomes, and nanoparticles). In the case of polycationic peptides, the efficiency of PTDs to promote cellular uptake is directly related to their molecular mass or their polyvalent presentation. Similarly, the efficiency of routing to the nucleus increases with the number of nuclear localization signals (NLS) associated with a cargo. The quantitative enhancement, however, depends on the identity of the PTD sequence as well as the targeted cell type. Thus the choice and multivalent presentation of PTD and NLS sequences are important criteria guiding the design of macromolecules intended for specific intracellular localization. This review outlines synthetic and recombinant strategies whereby PTDs and signal sequences can be assembled into multivalent peptide dendrimers and promote the uptake and routing of their cargoes. In particular, the tetramerization domain of the tumour suppressor p53 (p53tet) is emerging as a useful scaffold to present multiple routing and targeting moieties. Short cationic peptides fused to the 31-residue long p53tet sequence resulted in tetramers displaying a significant enhancement (up to 1000 fold) in terms of their ability to be imported into cells and delivered to the cell nucleus in relation to their monomeric analogues. The design of future polycationic peptide dendrimers as effective delivering vehicles will need to incorporate selective cell targeting functions and provide solutions to the issue of endosomal entrapment.  相似文献   

9.
Gold nanoparticles modified with nuclear localization peptides were synthesized and evaluated for their subcellular distribution in HeLa human cervical epithelium cells, 3T3/NIH murine fibroblastoma cells, and HepG2 human hepatocarcinoma cells. Video-enhanced color differential interference contrast microscopy and transmission electron microscopy indicated that transport of nanoparticles into the cytoplasm and nucleus depends on peptide sequence and cell line. Recently, the ability of certain peptides, called protein transduction domains (PTDs), to transclocate cell and nuclear membranes in a receptor- and temperature-independent manner has been questioned (see for example, Lundberg, M.; Wikstrom, S.; Johansson, M. (2003) Mol. Ther. 8, 143-150). We have evaluated the cellular trajectory of gold nanoparticles carrying the PTD from HIV Tat protein. Our observations were that (1) the conjugates did not enter the nucleus of 3T3/NIH or HepG2 cells, and (2) cellular uptake of Tat PTD peptide-gold nanoparticle conjugates was temperature dependent, suggesting an endosomal pathway of uptake. Gold nanoparticles modified with the adenovirus nuclear localization signal and the integrin binding domain also entered cells via an energy-dependent mechanism, but in contrast to the Tat PTD, these signals triggered nuclear uptake of nanoparticles in HeLa and HepG2 cell lines.  相似文献   

10.
Delivery of therapeutics and imaging agents to target tissues requires localization and activation strategies with molecular specificity. Cell-associated proteases can be used for these purposes in a number of pathologic conditions, and their enzymatic activities can be exploited for activation strategies. Here, molecules based on the d-arginine octamer (r8) protein-transduction domain (PTD, also referred to as molecular transporters) have been adapted for selective uptake into cells only after proteolytic cleavage of a PTD-attenuating sequence by the prostate-specific antigen (PSA), an extracellular protease associated with the surface and microenvironment of certain prostate cancer cells. Convergent syntheses of these activatable PTDs (APTDs) are described, and the most effective r8 PTD-attenuating sequence is identified. The conjugates are shown to be stable in serum, cleaved by PSA, and taken up into Jurkat (human T cells) and PC3M prostate cancer cell lines only after cleavage by PSA. These APTD peptide-based molecules may facilitate targeted delivery of therapeutics or imaging agents to PSA-expressing prostate cancers.  相似文献   

11.
Protein transduction domains (PTDs) are peptides that afford the internalization of cargo macromolecules (including plasmid DNA, proteins, liposomes, and nanoparticles). In the case of polycationic peptides, the efficiency of PTDs to promote cellular uptake is directly related to their molecular mass or their polyvalent presentation. Similarly, the efficiency of routing to the nucleus increases with the number of nuclear localization signals (NLS) associated with a cargo. The quantitative enhancement, however, depends on the identity of the PTD sequence as well as the targeted cell type. Thus the choice and multivalent presentation of PTD and NLS sequences are important criteria guiding the design of macromolecules intended for specific intracellular localization. This review outlines synthetic and recombinant strategies whereby PTDs and signal sequences can be assembled into multivalent peptide dendrimers and promote the uptake and routing of their cargoes. In particular, the tetramerization domain of the tumour suppressor p53 (p53tet) is emerging as a useful scaffold to present multiple routing and targeting moieties. Short cationic peptides fused to the 31-residue long p53tet sequence resulted in tetramers displaying a significant enhancement (up to 1000 fold) in terms of their ability to be imported into cells and delivered to the cell nucleus in relation to their monomeric analogues. The design of future polycationic peptide dendrimers as effective delivering vehicles will need to incorporate selective cell targeting functions and provide solutions to the issue of endosomal entrapment.  相似文献   

12.
The delivery of molecules into cells poses a critical problem that has to be solved for the development of diagnostic tools and therapeutic agents acting on intracellular targets. Cargos which by themselves cannot penetrate cellular membranes due to their biophysical properties can achieve cell membrane permeability by fusion to protein transduction domains (PTDs). Here, we engineered a universal delivery system based on PTD‐fused Strep‐Tactin, which we named Transtactin. Biochemical characterization of Transtactin variants bearing different PTDs indicated high thermal stabilities and robust secondary structures. Internalization studies demonstrated that Transtactins facilitated simple and safe transport of Strep‐tag II‐linked small molecules, peptides and multicomponent complexes, or biotinylated proteins into cultured human cells. Transtactin‐introduced cargos were functionally active, as shown for horseradish peroxidase serving as a model protein. Our results demonstrate that Transtactin provides a universal and efficient delivery system for Strep‐tag II‐fused cargos.  相似文献   

13.
Protein transduction domains (PTDs) are short amino acid sequences that promote their own translocation across the cell plasma membrane and have been studied for possible use in drug delivery and gene therapy. However, no direct method to quantify transduction is available. Here, using a new luciferase-tagged human PTD, we show that cellular uptake levels can be determined in a reliable manner. Furthermore, we show that enhanced in vivo tracking by human PTD can be quantified in a mouse model. This is the first report on the direct quantification of PTD transduction in vitro and in vivo, which will be necessary for studying its possible therapeutic application in drug delivery and gene therapy.  相似文献   

14.
15.
The development of peptide drugs and therapeutic proteins is limited by the poor permeability and the selectivity of the cell membrane. There is a growing effort to circumvent these problems by designing strategies to deliver full-length proteins into a large number of cells. A series of small protein domains, termed protein transduction domains (PTDs), have been shown to cross biological membranes efficiently and independently of transporters or specific receptors, and to promote the delivery of peptides and proteins into cells. TAT protein from human immunodeficiency virus (HIV-1) is able to deliver biologically active proteins in vivo and has been shown to be of considerable interest for protein therapeutics. Similarly, the third alpha-helix of Antennapedia homeodomain, and VP22 protein from herpes simplex virus promote the delivery of covalently linked peptides or proteins into cells. However, these PTD vectors display a certain number of limitations in that they all require crosslinking to the target peptide or protein. Moreover, protein transduction using PTD-TAT fusion protein systems may require denaturation of the protein before delivery to increase the accessibility of the TAT-PTD domain. This requirement introduces an additional delay between the time of delivery and intracellular activation of the protein. In this report, we propose a new strategy for protein delivery based on a short amphipathic peptide carrier, Pep-1. This peptide carrier is able to efficiently deliver a variety of peptides and proteins into several cell lines in a fully biologically active form, without the need for prior chemical covalent coupling or denaturation steps. In addition, this peptide carrier presents several advantages for protein therapy, including stability in physiological buffer, lack of toxicity, and lack of sensitivity to serum. Pep-1 technology should be extremely useful for targeting specific protein-protein interactions in living cells and for screening novel therapeutic proteins.  相似文献   

16.
Pathway for polyarginine entry into mammalian cells   总被引:11,自引:0,他引:11  
Fuchs SM  Raines RT 《Biochemistry》2004,43(9):2438-2444
Cationic peptides known as protein transduction domains (PTDs) provide a means to deliver molecules into mammalian cells. Here, nonaarginine (R(9)), the most efficacious of known PTDs, is used to elucidate the pathway for PTD internalization. Although R(9) is found in the cytosol as well as the nucleolus when cells are fixed, this peptide is observed only in the endocytic vesicles of live cells. Colocalization studies with vesicular markers confirm that PTDs are internalized by endocytosis rather than by crossing the plasma membrane. The inability of R(9) to enter living cells deficient in heparan sulfate (HS) suggests that binding to HS is necessary for PTD internalization. This finding is consistent with the high affinity of R(9) for heparin (K(d) = 109 nM). Finally, R(9) is shown to promote the leakage of liposomes but only at high peptide:lipid ratios. These and other data indicate that the PTD-mediated delivery of molecules into live mammalian cells involves (1) binding to cell surface HS, (2) uptake by endocytosis, (3) release upon HS degradation, and (4) leakage from endocytic vesicles.  相似文献   

17.
Cell penetrating peptides (CPPs) are short amphipathic and cationic peptides that are rapidly internalized across cell membranes. They can be used to deliver molecular cargo, such as imaging agents (fluorescent dyes and quantum dots), drugs, liposomes, peptide/protein, oligonucleotide/DNA/RNA, nanoparticles and bacteriophage into cells. The utilized CPP, attached cargo, concentration and cell type, all significantly affect the mechanism of internalization. The mechanism of cellular uptake and subsequent processing still remains controversial. It is now clear that CPP can mediate intracellular delivery via both endocytic and non-endocytic pathways. In addition, the orientation of the peptide and cargo and the type of linkage are likely important. In gene therapy, the designed cationic peptides must be able to 1) tightly condense DNA into small, compact particles; 2) target the condensate to specific cell surface receptors; 3) induce endosomal escape; and 4) target the DNA cargo to the nucleus for gene expression. The other studies have demonstrated that these small peptides can be conjugated to tumor homing peptides in order to achieve tumor-targeted delivery in vivo. On the other hand, one of the major aims in molecular cancer research is the development of new therapeutic strategies and compounds that target directly the genetic and biochemical agents of malignant transformation. For example, cell penetrating peptide aptamers might disrupt protein-protein interactions crucial for cancer cell growth or survival. In this review, we discuss potential functions of CPPs especially for drug and gene delivery in cancer and indicate their powerful promise for clinical efficacy.  相似文献   

18.
19.
Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed.  相似文献   

20.
Cellular uptake of the human immunodeficiency virus TAT protein transduction domain (PTD), or cell-penetrating peptide, has previously been surmised to occur in a manner dependent on the presence of heparan sulfate proteoglycans that are expressed ubiquitously on the cell surface. These acidic polysaccharides form a large pool of negative charge on the cell surface that TAT PTD binds avidly. Additionally, sulfated glycans have been proposed to aid in the interaction of TAT PTD and other arginine-rich PTDs with the cell membrane, perhaps aiding their translocation across the membrane. Surprisingly, however, TAT PTD-mediated induction of macropinocytosis and cellular transduction occurs in the absence of heparan sulfate and sialic acid. Using labeled TAT PTD peptides and fusion proteins, in addition to TAT PTD-Cre recombination-based phenotypic assays, we show that transduction occurs efficiently in mutant Chinese hamster ovary cell lines deficient in glycosaminoglycans and sialic acids. Similar results were obtained in cells where glycans were enzymatically removed. In contrast, enzymatic removal of proteins from the cell surface completely ablated TAT PTD-mediated transduction. Our findings support the hypothesis that acidic glycans form a pool of charge that TAT PTD binds on the cell surface, but this binding is independent of the PTD-mediated transduction mechanism and the induction of macropinocytotic uptake by TAT PTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号