首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kinetic studies on a rat brain (Na+ + K+)-dependent ATPase (EC 3.6.1.3) preparation demonstrated high-affinity sites for ATP, with a Km near 1 mum, and low affinity sites for ATP, with a Km near 0.5 mM. In addition, the dissociation constant for ATP at the low affinity sites was approached through the ability of ATP to modify the rate of photo-oxidation of the enzyme in the presence of methylene blue; a value of 0.4 mM was obtained. The temperature dependence of the Km values in these two concentration ranges also differed markedly, and the estimated entropy of binding was +27 cal/degree per mol at the high affinity sites, whereas it was -20 cal/degree per mol at the low affinity sites. Moreover, the relative affinities of various congeners of ATP as of the K+ -dependent phosphatase reaction of the enzyme indicated an interaction at the low-affinity sites for ATP: ATP, ADP, CTP, and the [beta-gamma] -imido analog of ATP all competed with Ki values near those for the ATPase reaction at the low affinity sites. Conversely, the Km for nitrophenyl phosphate as a substrate for the phosphatase reaction was near its Ki as a competitor at the low-affinity sites of the ATPase reaction. These observations are incorporated into a reaction scheme with two classes of substrate sites on a dimeric enzyme, manifesting idverse enzymatic and transport characteristics.  相似文献   

3.
4.
K+ appears to decrease the affinity of the (Na+ + K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) for its substrate, Mg2+ - ATP, and Mg2+ - ATP, in turn, appears to decrease the affinity of the enzyme for K+. These antagonisms have been investigated in terms of a quantitative model defining the magnitude of the effects as well as identifying the class of K+ sites on the enzyme involved. K+ increased the apparent Km for Mg2+ - ATP, an effect that was antagonized competitively by Na+. The data can be fitted to a model in which Mg2+ - ATP binding is prevented by occupancy of alpha-sites on the enzyme by K+ (i.e. sites of moderate affinity for K+ accessible on the "free" non-phosphorylated enzyme, in situ on the external membrane surface). By contrast, occupancy of these alpha-sites by Na+ has no effect on Mg2+ - ATP binding to the enzyme. On the other hand, Mg2+ - ATP decreased the apparent affinity of the enzyme for K+ at the alpha-sites, in terms of (i) the KD for K+ measured by K+-accelerated inactivation of the enzyme by F-, and (ii) the concentration of K+ for half-maximal activation of the K+-dependent phosphatase reaction (which reflects the terminal hydrolytic steps of the overall ATPase reaction). These data fit the same quantitative model. Although this formulation does not support schemes in which ATP binding effects the release of transported K+ from discharge sites, it is consistent with observations that K+ can inhibit the enzyme at low substrate concentrations, and that Li+, which has poor efficacy when occupying these alpha-sites, can stimulate enzymatic activity at high K+ concentrations by displacing the inhibitory K+.  相似文献   

5.
6.
K+ interactions with a rat brain (Na+ + K+)-dependent ATPase and the associated K+-dependent nitrophenyl phosphatase activity were examined. Classes of sites for K+ were distinguished, initially, on the basis of affinity estimated by kinetic analysis in terms of KO.5 (the concentration for half-maximal activation), and by K+-accelerated enzyme inactivation by F-minus, which permits evaluation of a dissociation constant for K+, KD. Moderate-affinity sites ("alpha sites"), with a KD near 1 mM, were demonstrable for the phosphatase activity and for the "free" enzyme. High-affinity sites ("beta sites"), with a KD near 0.1 mM, were seen for the overall ATPase activity and under conditions in which enzyme phosphorylation by substrate also occurs. Further differentiation between alpha and beta sites was made in terms of (i) the characteristic changes in affinity with pH, and (ii) the efficacy of Li+ relative to K+, Rb+, Cs+, and Tl+ at these two classes of sites. Low-affinity sites ("gamma sites") through which K+ inhibits enzymatic activity were also detectable, with a KD around 140 mM. These data are incorporated into a model for the reaction sequence to accommodate both transport processes and certain K+/ATP antagonisms.  相似文献   

7.
8.
1. Kidney (Na+ + K+)-stimulated ATPase was depleted of phospholipids by extraction with lubrol and inserted in lipid structures of known composition. Both ouabain-sensitive ATPase and phosphatase reactions could be partially restored by lipid replacement. 2. Lipid vesicles of natural and synthetic negative phospholipids proved to be effective. The low activity of uncharged liposomes was increased when negative charges were included into the bilayer structure. 3. Reactivation by negative phospholipids was accompanied by spontaneous re-assembly of a stable lipid-protein complex. By contrast, the interaction of lipid deficient ATPase complex with uncharged lamellae was possible only after sonication of lipid-protein suspension. Reactivation did not ensue. 4. The ouabain-sensitive ATPase reactivated by synthetic dioleoylphosphatidylglycerol yielded curvilinear Arrhenius plots. The same pattern was seen with the original undepleted microsomal preparation. A discontinuity close to the temperature of fluid-order transition was found with dimyristoyl phosphatidylglycerol. 5. It is concluded that reassembly of lipid-deficient (Na+ + K+)-stimulated ATPase requires the addition of diacylphospholipids with fluid acyl-chains and negatively charged polar heads able to assemble in an expanded lamellar configuration.  相似文献   

9.
The hydrolysis of [gamma-32P]ATP by porcine brain (Na+ + K+)-stimulated ATP phosphohydrolase (EC 3.6.1.3) has been studied at 28 degree C in a rapid mixing quenched-flow apparatus. An "early burst" in the release of Pi from ATP has been observed when the enzyme is mixed with ATP, Na+ and a relatively high concentration of K+ (10 mM) but the burst is less pronounced with 0.5 mM K+. This "early burst" of Pi release is suppressed when the enzyme is pre-mixed with 10 mM K+ or 20% (v/v) dimethylsulphoxide before mixing with ATP and Na+, and premixing of enzyme with Na+ antagonizes this effect of dimethylsulphoxide. The results have been analysed by a non-linear least squares regression treatment and are consistent with a mechanism involving three steps, one of which may be a relatively slow change in enzyme conformation following release of Pi from its covalent linkage with the enzyme, in addition to formation of the enzyme-substrate complex. Rate constants (and S.E.) for these steps have been calculated and the roles of phospho-enzyme and other intermediates in the reaction mechanism of the transport ATPase are dicussed.  相似文献   

10.
11.
The (Na+ + K+)-dependent ATPase exhibits substrate sites with both high affinity (K m near 1 µM) and low affinity (K m near 0.1 mM) for ATP. To permit the study of nucleotide binding to the high-affinity substrate sites of a canine kidney enzyme preparation in the presence as well as absence of MgCl2, the nonhydrolyzable - imido analog of ATP, AMP-PNP, was used in experiments performed at 0–4°C by a centrifugation technique. By this method theK D for AMP-PNP was 4.2 µM in the absence of MgCl2. Adding 50 µM MgCl2, however, decreased theK D to 2.2 µM; by contrast, higher concentrations of MgCl2 increased theK D until, with 2 mM MgCl2, theK D was 6 µM. The half-maximal effect of MgCl2 on increasing theK D occurred at approximately 1 mM. This biphasic effect of MgCl2 is interpreted as Mg2+ in low concentrations favoring AMP-PNP binding through formation at the high-affinity substrate sites of a ternary enzyme-AMP-PNP-Mg complex; inhibition of nucleotide binding at higher MgCl2 concentrations would represent Mg2+ acting through the low-affinity substrate sites. NaCl in the absence of MgCl2 increased AMP-PNP binding, with a half-maximal effect near 0.3 mM; in the presence of MgCl2, however, NaCl increased theK D for AMP-PNP. KCl decreased AMP-PNP binding in the presence or absence of MgCl2, but the simultaneous presence of a molar excess of NaCl abolished (or masked) the effect of KCl. ADP and ATP acted as competitors to the binding of AMP-PNP, although a substrate for the K+-dependent phosphatase reaction also catalyzed by this enzyme,p-nitrophenyl phosphate, did not. This lack of competition is consistent with formulations in which the phosphatase reaction is catalyzed at the low-affinity substrate sites.  相似文献   

12.
13.
(Na+ + K+)-dependent ATPase preparations from rat brain, dog kidney, and human red blood cells also catalyze a K+ -dependent phosphatase reaction. K+ activation and Na+ inhibition of this reaction are described quantitatively by a model featuring isomerization between E1 and E2 enzyme conformations with activity proportional to E2K concentration: (formula; see text) Differences between the three preparations in K0.5 for K+ activation can then be accounted for by differences in equilibria between E1K and E2K with dissociation constants identical. Similarly, reductions in K0.5 produced by dimethyl sulfoxide are attributable to shifts in equilibria toward E2 conformations. Na+ stimulation of K+ -dependent phosphatase activity of brain and red blood cell preparations, demonstrable with KCl under 1 mM, can be accounted for by including a supplementary pathway proportional to E1Na but dependent also on K+ activation through high-affinity sites. With inside-out red blood cell vesicles, K+ activation in the absence of Na+ is mediated through sites oriented toward the cytoplasm, while in the presence of Na+ high-affinity K+ -sites are oriented extracellularly, as are those of the (Na+ + K+)-dependent ATPase reaction. Dimethyl sulfoxide accentuated Na+ -stimulated K+ -dependent phosphatase activity in all three preparations, attributable to shifts from the E1P to E2P conformation, with the latter bearing the high-affinity, extracellularly oriented K+ -sites of the Na+ -stimulated pathway.  相似文献   

14.
A guinea pig kidney membrane preparation was incubated with thimerosal and then thoroughly washed. Comparison of the properties of the native and the modified membranes showed that (a) Na++K+-dependent activity is substantially inhibited by thimerosal; (b) thimerosal does not diminish Na+-dependent ATPase activity; and (c) the thimerosal treated enzyme, like the native enzyme, is phosphorylated in the presence of Na+ and ATP, and dephosphorylated upon the addition of K+. It is suggested that thimerosal does not affect the binding of ATP to the high-affinity catalytic site, but that it blocks the binding of ATP to a low affinity modifying site the occupation of which is essential for the dissociation of the stable K+-dephosphoenzyme and the recycling of the enzyme.  相似文献   

15.
16.
The properties of a (Na+ plus K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) activator contained in leukocytic extracts was investigated. Intact polymorphonuclear leukocytes release the activator in a time- and temperature-dependent process. It is non-dialyzable through cellophane; inactivated by protease, trypsin, or phenol; contains essential sulfhydryl groups; and is heat and acid labile. Treatment of ATPase with the activator and subsequent removable of the activator from mixtures did not reverse the ATPase activation.  相似文献   

17.
18.
Diploid human lymphoblastoid cells with altered response to ouabain inhibition of the (Na+ + K+)-dependent ATPase transport system, manifest both in whole cells and in purified plasma membrane vesicles, were selected for their resistance to 0.1 muM ouabain. Ouabain-resistant (OUA(R)) cells with normal growth at 50 times this dose were recovered at a frequency 1 X 10(-6). This frequency was increased 9-fold after exposure to ethyl methane sulphonate but was decreased by the frameshift mutagen ICR-191, under conditions where both increased the frequency of 8-azaguanine-resistant colonies. The ouabain resistance phenotype was stable after 200 population doublings in the absence of ouabain. OUA(R) clones show showed 30-50% of the wild type amount of 3H-ouabain bound per cell, with the same dissociation constant for ouabain, 0.1 muM at 0.5 mM K+, as observed in wild-type cells. Both the initial rate of uptake of 86Rb+ in OUA(R) cells and the (Na+ + K+)-dependent ATPase activity of OUA(R) plasma membranes showed decreased sensitivity to ouabain inhibition. However, growth and transport properties of OUA(R) cells in the absence of ouabain were unchanged compared with wild type cells.  相似文献   

19.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

20.
1. The effect of free Mg2+, MgEDTA and MgCDTA on the phofphorylation of the (Na+ + K+)-activated ATPase (ATP phosphohydrolase, EC 3.6.1.3) has been studied. 2. 10 mM trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) added simultaneously with [gamma-32P]ATP to a solution containing the enzyme, 1 mM Mg2+ and 150 mM Na+ does not prevent formation of phospho-enzyme. When [gamma-32P]ATP is added after CDTA the level of phospho-enzyme obtained decreases with increase in the time interval between addition of CDTA and ATP. The inability of CDTA to prevent the formation of phospho-enzyme becomes more pronounced when the medium contains MgEDTA. In the presence of CDTA the maximum amount of phospho-enzyme formed increases with the MgEDTA concentration. 3. Without CDTA the steady-state level of phospho-enzyme is directly proportional to the logarithm of free Mg2+ concentration. Neither with suboptimal nor with optimal concentrations of free Mg2+ does MgEDTA have an effect on the level of phospho-enzyme formed. 4. Using the phospho-enzyme level as a measure of free Mg2+ the experiments show that CDTA reacts slower with Mg2+ than does EDTA, but the stability constant of MgCDTA complex is higher than of MgCDTA, complex. 5. Due to the higher stability constant, of MgCDTA, as compared to MgEDTA, addition of CDTA to a medium containing free Mg2+ and MgEDTA will not only chelate the free Mg2+, but it will also shift the equilibrium from MgEDTA towards MgCDTA, i.e. MgEDTA acts as a source of free Mg2+ which is then chelated by CDTA. The experiments show that it takes minutes before Mg2+, EDTA and CDTA come to equilibrium. Provided the dissociation of MgEDTA is faster than the formation of the MgCDTA complex, the medium will contain a concentration of free Mg2+ which at any given instant is near in equilibrium with a slowly decreasing concentration of MgEDTA; this free Mg2+ can support phosphorylation. This can explain why the rate with which CDTA stops phosphorylation decreases with an increase in the MgEDTA concentration. 6. When phosphorylation is stopped by addition of unlabelled ATP, the rate of dephosphorylation is faster than when it is stopped by addition of CDTA both with and without EDTA in the medium. CDTA reacts too slowly with Mg2+ to be used as a chelator in studies where a fast removal of Mg2+ is required. 7. A previous finding has been verified, namely that the rate of spontaneous, of K+-stimulated and of ADP-stimulated dephosphorylation is independent of the Mg2+ concentration during formation of phospho-enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号