首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
万昊  刘卫国  魏杰 《生态学杂志》2015,34(1):100-105
采集宁夏云雾山草原植被演替阶段的土壤和植物样品,测定土壤容重(BD)、土壤含水量(WC)、土壤有机碳(SOC)含量、以及土壤和植物优势种稳定碳同位素组成(δ13C),并比较了它们之间的差异,分析其反映的环境信息。结果表明:在表层0~10 cm深度,灌木地SOC含量为71.7 g·kg-1,显著高于草地的54.6 g·kg-1;灌木地0~20 cm深度SOC含量占1 m深SOC含量的58.1%,而草地在0~40 cm深度的SOC含量占1 m深的34.1%;短期植被演替(约10 a)对土壤剖面0~20 cm层的δ13C值有显著影响,其中对0~10 cm层δ13C影响最大;草地演替为灌木地后δ13C偏负1.4‰,30 cm以下土壤δ13C值对短期植被变化不敏感;通过δ13C在C3植被的短期演替过程中的响应关系发现,δ13C值作为土壤碳库更替和碳循环的研究工具有很好的辨识力;灌木的δ13C值从叶子到根系存在明显差异,逐渐偏正,变化为2.2‰,草地为1.9‰;通过对0~40 cm深度植物根系δ13C值的测定发现,灌木地由表层的-28.15‰变为-26.11‰,偏正了2.04‰,草地根系δ13C值从表层的-27.08‰变为-27.57‰,偏负了0.49‰。  相似文献   

2.
土壤碳、氮稳定同位素自然丰度(δ13C和δ15N)随土壤深度变化的研究,对揭示碳、氮元素生物地球化学循环机制具有重要意义.本文在概述土壤剖面δ13C和δ15N垂直分布特征的基础上,重点介绍了土壤δ13C和δ15N垂直分布模式的影响机制.土壤剖面δ13C垂直分布模式的影响机制主要有3种:1)植被δ13C值的历史变化;2)...  相似文献   

3.
以贵州喀斯特地区两种主要土壤类型(石灰土和黄壤)为研究对象,通过测定土壤pH值、土壤有机碳(SOC)含量和植物优势种、枯枝落叶、土壤有机质的稳定同位素(δ13Csoc值)组成,探讨了该地区石灰土和黄壤剖面SOC垂直分布特征和δ13Csoc值组成差异。结果表明,与黄壤相比,石灰土剖面的SOC含量较高,石灰土剖面和黄壤剖面SOC含量变化范围分别在3.6~69.8和2.4~51.2g·kg-1。黄壤和黄色石灰土剖面SOC主要集中在0~20cm深度内,而黑色石灰土剖面从0~60cm逐步减少。黑色石灰土和黄壤剖面δ13Csoc值变化范围分别在-22.9‰~-21.5‰和-25.6‰~-22.4‰,前者较后者变化小。从剖面表土向下,黄壤剖面δ13Csoc值均出现逐步增加的趋势,而石灰土剖面δ13Csoc值从剖面表土向下出现上升-降低-不变的变化趋势。黄色石灰土剖面δ13Csoc值变幅较大,变化范围为-23.7‰~-18.2‰。在枯枝落叶转化为表层土壤有机质的过程中,石灰土剖面δ13Csoc值变幅高于黄壤。其中,黄壤剖面δ13Csoc值升高了2.6‰~3.0‰,石灰土剖面δ13Csoc值升高了5.5‰~6.3‰。上述结果揭示了SOC含量及其δ13C值随深度变化的差异,反映植物残体的输入及其在土壤中分解累积特征,有助于揭示SOC循环过程及规律和了解剖面土壤成土过程。  相似文献   

4.
准噶尔盆地南缘荒漠区土壤碳分布及其稳定同位素变化   总被引:3,自引:0,他引:3  
以亚洲中部干旱区准噶尔盆地南缘荒漠区为研究区,根据荒漠距离绿洲的距离,分别在荒漠边缘、中部和腹地设置3条样带,并采集2 m深的土壤剖面样品,研究土壤有机碳(SOC)、无机碳(SIC)含量及其稳定碳同位素的分布,探讨土壤碳变化与距绿洲距离的关系.结果表明: SOC含量随剖面土层深度增加而减少.受距绿洲距离的影响,SOC含量表现为荒漠边缘>荒漠中部>荒漠腹地.荒漠边缘SOC的δ13C值范围为-21.92‰~-17.41‰,且随深度增加而递减;荒漠中部和荒漠腹地的δ13C值范围为-25.20‰~-19.30‰,且随深度增加先增后减,由此推断准噶尔盆地南缘荒漠中部和腹地地表植被以C3植物为主,而绿洲边缘经历了从C3植物为主到C4植物为主的演替过程.荒漠边缘SIC平均含量为38.98 g·kg-1,是荒漠腹地的6.01倍,表明0~2 m深度内大量SIC在荒漠边缘呈聚集趋势.SIC的δ13C值随深度增加先减后增,底层富集,主要受原生碳酸盐含量和剖面土壤CO2的影响.  相似文献   

5.
上前寒武系高于庄组、雾迷山组黑色含蓝藻化石燧石层岩样,下第三系油田沉积含藻岩芯岩样、现代蓝藻色球藻科(Chroococaceac)标本热模拟样品、非热模拟样品经粉碎、抽提分离,对其苯溶馏分、无水乙醇馏分和部分石油醚馏分利用MAT251质谱仪进行了稳定碳同位素质谱分析。碳同位素组成用δ~(13)C PDB表示。结果表明:上前寒武系的有机样品的δ~(13)C平均值为-30.49‰,下第三系油田沉积物中的有机样品的δ~(13)C平均值为-25.52‰,现代蓝藻非热模拟样品的δ~(13)C平均值为-22.08‰,热模拟样品的δ~(13)C平均值为-16.69‰,反映出随地质时期由老到新δ~(13)C平均值呈梯度上升。苯溶物比乙醇溶物,热模拟比非热模拟蓝藻δ~(13)C平均值明显增大,表现出δ~(13)C值和有机质组分的不同及热解产物类型差异有关。  相似文献   

6.
以新疆南北疆8个不同生境林龄群体的胡杨叶片为材料,测定幼树和成熟胡杨叶片的天然稳定碳、氮同位素组成值(δ~(13)C、δ~(15)N)以及碳含量、氮含量和比叶面积,分析叶片δ~(13)C、δ~(15)N值与海拔、经纬度、叶片碳氮含量、比叶面积以及水分利用效率之间的相互关系。结果表明:(1)胡杨幼树和成熟林叶片δ~(13)C平均值分别为-27.863‰(-28.776‰~-26.695‰)和-28.230‰(-29.717‰~-26.033‰),不同生境胡杨叶片间的δ~(13)C值具有显著差异(P0.05),并且幼树林叶片δ~(13)C均大于对应成熟林;幼树和成熟林叶片δ~(15)N平均值分别为3.259‰(-1.842‰~9.082‰)和3.651‰(0.798‰~5.779‰)。(2)胡杨幼树和成熟林叶片碳含量平均值分别为46.225‰(44.573‰~49.056‰)和45.720‰(43.226‰~47.349‰),它们叶片氮含量平均值分别为1.708‰(1.327‰~2.116‰)和1.823‰(1.164‰~2.450‰);成熟林叶片碳含量与其δ~(13)C和δ~(15)N值分别呈极显著负相关和极显著正相关关系(P0.01),而其氮含量与δ~(13)C值呈不显著正相关关系(P0.05),与δ~(15)N值呈显著正相关关系。(3)胡杨幼树林叶片的比叶面积平均值(91.565 cm~2/g)小于成熟林叶片(103.141 cm~2/g)。(4)幼树和成熟林胡杨叶片δ~(13)C、δ~(15)N值均与纬度呈极显著正相关关系,幼树林叶片δ~(13)C、δ~(15)N值与海拔也呈极显著正相关关系,幼树林叶片δ~(15)N值与经度也呈显著正相关关系。(5)幼树和成熟胡杨林水分利用率的平均值分别为77.618μmol/mol(68.070~91.069μmol/mol)和72.463μmol/mol(62.809~97.111μmol/mol),不同林龄的胡杨水分利用率均与其叶片δ~(13)C呈极显著正相关关系(P0.001),各生境中于田县(阿日系马扎)的幼树和成熟林叶片具有较高的δ~(13)C值(-26.695‰和-26.033‰)和水分利用效率(91.069和97.111μmol/mol)。  相似文献   

7.
长期垄作稻田腐殖质稳定碳同位素丰度(δ13C)分布特征   总被引:1,自引:0,他引:1  
研究了四川盆地丘陵区连续16年垄(宽垄)作稻田土壤稳定碳库腐殖质组分的稳定碳同位素(δ13C)分布特征.结果表明:稻田土壤有机碳含量为宽垄作>垄作>水旱轮作.腐殖质碳以胡敏素为主,占土壤碳含量的21%~30%,提取碳以胡敏酸为主,分别占土壤有机碳和腐殖质的17%~21%和38%~65%.土壤有机碳的δ13C值介于-27.9‰~-25.6‰,20~40cm和0~5 cm土壤有机碳δ13C值之差约为1.9‰.土壤胡敏酸δ13C值比土壤有机碳低1‰~2‰,更接近于油菜和水稻秸秆及根系的δ13C值.土壤富里酸δ13C值分别较土壤有机碳和胡敏酸高2‰和4‰.耕作层和犁底层胡敏素δ13C值分别介于-23.7‰~-24.9‰和-22.6‰~-24.2‰,δ13C值的变化反映了耕层中腐殖质的新老混合现象.各有机组分δ13C值递减顺序为:胡敏素>富里酸>土壤有机碳>稻草(油菜)残体>胡敏酸.长期水稻种植有利于增加土壤有机碳含量,同时,耕作方式影响土壤腐殖质δ13C在耕作层和犁底层中的分布格局.  相似文献   

8.
高寒草甸植物碳氮组成及其稳定同位素特征   总被引:1,自引:0,他引:1  
采用稳定同位素质谱仪Isoprime100,对采自黄河源区典型高寒草甸和人工改良草地的主要植物进行了碳、氮组成及其稳定同位素丰富度测定,判断植物光合类型,探讨稳定碳氮同位素丰富度对草地植被演替的响应。结果表明:(1)研究区58种主要植物碳元素含量在28.64%~51.55%之间,氮元素含量介于0.89%~4.04%,δ13 C值变化范围介于-29.50‰~-24.69‰,δ15 N值介于-4.57‰~8.32‰。(2)不同样地植物碳含量的大小顺序为人工草地(45.54%)未退化草甸(43.18%)轻度退化草甸(42.18%)严重退化草甸(39.68%),氮元素含量顺序为未退化草甸(2.30%)人工草地(2.28%)轻度退化草甸(2.13%)严重退化草甸(2.10%),表明草甸退化会引起植物碳氮含量的降低。(3)未退化草甸、人工草地、轻度退化草甸和严重退化草甸的δ13 C值依次为-25.63‰、-26.57‰、-26.76‰和-27.91‰,δ15 N值依次为-0.63‰、0.32‰、2.76‰和0.26‰。研究认为,黄河源区高寒草甸和人工改良草地的58种主要植物均属C3植物,没有发现C4和景天酸代谢(CAM)植物,低的年均气温可能是制约该区C4植物分布的主要因素;植物δ13 C值随草地退化程度加剧而逐渐降低,但δ15 N值的变化无规律性趋势。  相似文献   

9.
黄土地区不同覆被下土壤无机碳分布及同位素组成特征   总被引:4,自引:0,他引:4  
土壤无机碳在剖面上的分布在评估区域碳库储量、陆地碳循环以及全球变化的研究中具有重要作用.本文通过测定黄土地区不同植被类型覆盖下土壤pH值、碳酸盐含量、δ13C和δ18O值,探讨了黄土地区植被类型对碳酸盐在土壤剖面中分布和同位素组成特征的影响.结果表明:各剖面碳酸盐含量为5.7% ~ 14.1%,其均值大小为荒地>草地>林地;林地中,阔叶林>灌木林>针叶林,针叶林变化最明显;受成土母质影响,各剖面土壤pH值在7~8,呈弱碱性;土壤碳酸盐δ13C值分布为-6.2‰~-1.8‰,各剖面δ13C均值大小为荒地>灌木林>针叶林>草地>阔叶林;植被类型主要是通过向土壤输入有机质来影响土壤无机碳同位素组成;不同覆被下土壤剖面碳酸盐δ18O值差异明显,其可能受土壤物理性质如孔隙度、湿度等影响;黄土地区不同覆被下土壤无机碳含量和δ13C、δ18O值明显不同,因此,在植被演替过程中,植被类型的改变会影响到土壤无机碳库的储量和区域碳循环过程.  相似文献   

10.
<正>鼎湖山生物圈保护区森林景观(张倩媚摄)。熊鑫等通过对鼎湖山森林演替序列植物-土壤碳氮同位素自然丰度的测定,分析了叶片稳定碳同位素比率(δ~(13)C)和稳定氮同位素比率(δ~(15)N)与其叶片元素含量的关系,叶片-凋落物-土壤δ~(13)C、δ~(15)N沿演替方向以及土壤δ~(13)C、δ~(15)N沿剖面深度的变化特征,借此探讨该地区植物群落对资源的利用策略以及森林演替过程中碳氮元素循环过程的变化(本期533–542页)。  相似文献   

11.
12.
Nontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha?1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha?1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha?1 year?1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year?1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.  相似文献   

13.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   

14.
利用第八次森林资源连续清查数据和不同树种的树干密度、含碳率等参数,运用生物量清单法,估算了西藏自治区森林乔木层植被碳储量和碳密度.结果表明: 西藏森林生态系统乔木层植被总碳储量为1.067×109 t,平均碳密度为72.49 t·hm-2.不同林分乔木层碳储量依次为:乔木林>散生木>疏林>四旁树.不同林种乔木层碳储量大小依次为:防护林>特殊用途林>用材林>薪炭林,其中前两者所占比例为88.5%;不同林种乔木层平均碳密度为88.09 t·hm-2.不同林组乔木层碳储量与其分布面积排序一致,依次为:成熟林>过熟林>近熟林>中龄林>幼龄林.其中,成熟林乔木层碳储量占不同林组乔木层总碳储量的50%,并且不同林组乔木层碳储量随着林龄的增加呈先上升后下降的趋势.  相似文献   

15.
Comparisons among ecosystem models or ecosystem dynamics along environmental gradients commonly rely on metrics that integrate different processes into a useful diagnostic. Terms such as age, turnover, residence, and transit times are often used for this purpose; however, these terms are variably defined in the literature and in many cases, calculations ignore assumptions implicit in their formulas. The aim of this opinion piece was i) to make evident these discrepancies and the incorrect use of formulas, ii) highlight recent results that simplify calculations and may help to avoid confusion, and iii) propose the adoption of simple and less ambiguous terms.  相似文献   

16.
城市系统碳循环:特征、机理与理论框架   总被引:2,自引:0,他引:2  
赵荣钦  黄贤金 《生态学报》2013,33(2):358-366
城市是地表受人类活动影响最深刻的区域,城市系统碳循环在全球和区域碳过程中具有重要的地位和作用.提出了城市“自然-社会”二元碳循环的概念,探讨了城市系统碳循环的一般特征;分析了城市系统碳循环的内部机理,主要包括:城市系统碳储量和碳输入/输出通量的主要过程和途径、城市系统碳储量、碳通量和碳流通的生命周期分析、城市系统碳输入和碳输出的类型划分等;提出了基于系统层次划分和碳流通过程的城市系统碳循环的研究框架,分析了城市自然系统和城市经济系统的主要碳流通过程和环节,构建了城市系统碳循环研究的思路和理论框架;最后提出了城市系统碳循环领域未来的研究重点.  相似文献   

17.
四川长宁毛竹林碳储量与碳汇能力估测   总被引:1,自引:0,他引:1  
张蕊  申贵仓  张旭东  张雷  高升华 《生态学报》2014,34(13):3592-3601
利用生物量法研究了四川长宁毛竹林(Phyllostachys edulis)碳密度、碳储量及其空间分配格局,并对毛竹林碳汇能力进行了估算。结果表明:(1)毛竹立竹各器官的平均含碳率波动范围为462.37—480.68 g/kg,不同龄级毛竹各器官含碳率差异不显著。土壤有机碳含量为15.77 g/kg,不同土层差异极显著;(2)毛竹立竹碳储量为40.92 t/hm2,其中竹竿碳储量所占比例为51.49%,竹杆、竹枝、竹叶地上部分碳储量为26.76 t/hm2,占立竹碳储量的65.39%,地上碳储量为地下碳储量的1.89倍;(3)毛竹林总碳储量为156.57 t/hm2,其中土壤是其最大的碳库,为113.54 t/hm2,占总碳储量的72.52%,立竹碳储量所占比例为26.14%,林下植被碳库最小,为0.52 t/hm2,只占总碳储量的0.33%,可忽略不计;(4)毛竹林年生产量为20.28 t/hm2,年固碳量为9.43 t/hm2,相当于每年固定CO2量34.57 t/hm2,固碳能力较强。  相似文献   

18.
Black carbon (BC) is an important pool of the global C cycle, because it cycles much more slowly than others and may even be managed for C sequestration. Using stable isotope techniques, we investigated the fate of BC applied to a savanna Oxisol in Colombia at rates of 0, 11.6, 23.2 and 116.1 t BC ha?1, as well as its effect on non‐BC soil organic C. During the rainy seasons of 2005 and 2006, soil respiration was measured using soda lime traps, particulate and dissolved organic C (POC and DOC) moving by saturated flow was sampled continuously at 0.15 and 0.3 m, and soil was sampled to 2.0 m. Black C was found below the application depth of 0–0.1 m in the 0.15–0.3 m depth interval, with migration rates of 52.4±14.5, 51.8±18.5 and 378.7±196.9 kg C ha?1 yr?1 (±SE) where 11.6, 23.2 and 116.1 t BC ha?1, respectively, had been applied. Over 2 years after application, 2.2% of BC applied at 23.2 t BC ha?1 was lost by respiration, and an even smaller fraction of 1% was mobilized by percolating water. Carbon from BC moved to a greater extent as DOC than POC. The largest flux of BC from the field (20–53% of applied BC) was not accounted for by our measurements and is assumed to have occurred by surface runoff during intense rain events. Black C caused a 189% increase in aboveground biomass production measured 5 months after application (2.4–4.5 t additional dry biomass ha?1 where BC was applied), and this resulted in greater amounts of non‐BC being respired, leached and found in soil for the duration of the experiment. These increases can be quantitatively explained by estimates of greater belowground net primary productivity with BC addition.  相似文献   

19.
宁夏典型温性天然草地固碳特征   总被引:1,自引:0,他引:1  
本文研究了宁夏草甸草原、温性草原、草原化荒漠和荒漠草原4种温性典型天然草地生态系统碳储量及其构成特征。结果表明: 草甸草原、温性草原、草原化荒漠和荒漠草原植被总生物量分别为1178.91、481.22、292.80和209.09 g·m-2。其中,地下根系生物量是构成草甸草原和温性草原植被总生物量的主体,分别占总生物量的73.1%和56.6%;地上植被生物量是构成草原化荒漠和荒漠草原植被总生物量的主体,分别占总生物量的50.3%和47.6%;枯落物生物量占比较低,分别仅为8.5%、8.0%、6.4%和16.2%。草甸草原、温性草原、草原化荒漠和荒漠草原4种天然草地生态系统碳储量分别为13.90、5.94、2.69和2.37 kg·m-2,其中植被碳储量分别为470.26、192.23、117.17、83.36 g·m-2,0~40 cm土层土壤有机碳储量分别为13.43、5.75、2.58和2.29 kg·m-2,土壤有机碳储量是构成宁夏典型天然草地碳储量的主体,分别占到了生态系统碳储量的96.6%、96.8%、95.6%和96.5%。4种草地类型植被总生物量、植被碳储量、土壤有机碳储量和生态系统碳储量均表现为:草甸草原>温性草原>草原化荒漠>荒漠草原。  相似文献   

20.
The increasing success of invasive plant species in wetland areas can threaten their capacity to store carbon, nitrogen, and phosphorus (C, N, and P). Here, we have investigated the relationships between the different stocks of soil organic carbon (SOC), and total C, N, and P pools in the plant–soil system from eight different wetland areas across the South‐East coast of China, where the invasive tallgrass Spartina alterniflora has replaced the native tall grasses Phragmites australis and the mangrove communities, originally dominated by the native species Kandelia obovata and Avicennia marina. The invasive success of Spartina alterniflora replacing Phragmites australis did not greatly influence soil traits, biomass accumulation or plant–soil C and N storing capacity. However, the resulting higher ability to store P in both soil and standing plant biomass (approximately more than 70 and 15 kg P by ha, respectively) in the invasive than in the native tall grass communities suggesting the possibility of a decrease in the ecosystem N:P ratio with future consequences to below‐ and aboveground trophic chains. The results also showed that a future advance in the native mangrove replacement by Spartina alterniflora could constitute a serious environmental problem. This includes enrichment of sand in the soil, with the consequent loss of nutrient retention capacity, as well as a sharp decrease in the stocks of C (2.6 and 2.2 t C ha‐1 in soil and stand biomass, respectively), N, and P in the plant–soil system. This should be associated with a worsening of the water quality by aggravating potential eutrophication processes. Moreover, the loss of carbon and nutrient decreases the potential overall fertility of the system, strongly hampering the reestablishment of woody mangrove communities in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号