首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
于2009年生长季(5~9月份)对布置在1.0hm2的原始阔叶红松林样地内的100个草本样方(1m×1m)进行物种及其植株高度、盖度以及土壤因子、光照环境进行调查,分析不同层片与土壤因子、光照环境的相关性以及乔木层、灌木层、土壤因子、光照环境对草本层多样性格局的影响,以阐明长白山阔叶红松林林下草本层多样性格局及其影响因素。结果表明:(1)阔叶红松林下的草本植物存在明显的季节动态变化,其中,5月份黑水银莲花(Anemone amurensis)、延胡索(Corydalis ambigua)等早春短命植物占优势,6月份部分早春短命植物和早夏植物、晚夏植物同时出现,物种丰富度最高,7月份是夏季植物的生长旺季,物种多样性最高,8~9月份草本植物逐渐枯萎。(2)灌木层的多样性与草本层的多样性呈极显著正相关,灌木层的株数密度与不同月份的草本层盖度呈正相关、与草本层多样性呈负相关,而乔木层对草本层盖度和多样性的影响均不显著。(3)土壤速效钾、光照和土壤水分是关联乔木层和草本层的重要环境因子。研究认为,阔叶红松林下的乔木层通过影响光照、降水及枯落物的含量而间接影响草本层的多样性格局。  相似文献   

2.
亚热带常绿阔叶林9个常见树种的生物量相对生长模型   总被引:1,自引:0,他引:1  
生物量相对生长模型作为一种简便且有效的生物量估算方法,已得到广泛应用.国内偏重于针叶林或阔叶纯林的生物量相对生长模型研究,而在估算多树种阔叶林的生物量时,一般选用混合物种的生物量相对生长模型,这会导致估算结果产生较大误差.本文在亚热带常绿阔叶林典型分布区随机设置了33块样地,针对栲树、鹿角锥、钩锥、石栎、猴欢喜、虎皮楠、赤杨叶、乳源木莲和少叶黄杞9个常见的树种,构建了单物种及混合物种的生物量相对生长模型,并探讨了单物种模型及混合物种模型间估算误差的差异.结果表明:以D(胸径)和D2H(胸径的平方乘以树高)为自变量,分别构建混合物种模型,其中树枝、树叶、树根、地上和整株生物量是以D为自变量的模型为优,但树干生物量是以D2H为自变量的模型为优.将树高引入以D为自变量的单物种模型后,6个树种单物种模型的解释能力呈不同程度的下降趋势,最高下降5.6%(猴欢喜).与以D和D2H为自变量的混合物种模型相比,8个树种单物种模型的SEE(估计值的标准差)出现下降;对不同器官而言,其单物种模型的SEE不同程度地下降,最高达13.0%和20.3%(树枝).不考虑种间和模型形式间的差异,将会严重影响生物量碳库及其动态评估的准确性.因此,为提高生物量估算的准确性,应综合考虑种间和模型形式间的差异.  相似文献   

3.
殷正  范秀华 《生态学报》2020,40(7):2194-2204
为了解次生针阔混交林和阔叶红松林林下草本植物对幼苗生长和存活的影响,基于长白山次生针阔混交林样地(Ⅰ)和阔叶红松林样地(Ⅱ),以246个1 m×1 m幼苗样方中乔木幼苗为研究对象,通过去除草本植物的对照试验探究草本植物对乔木幼苗高度生长和存活率的影响。结果表明,(1)群落水平上,草本植物去除有助于林下乔木幼苗的高度生长。次生针阔混交林和阔叶红松林中幼苗高度生长量在除草后较对照组均有显著提高,且阔叶红松林中幼苗高度增长在对照组和处理组中均高于次生针阔混交林。(2)去除草本植物对不同年龄级水平乔木幼苗高度生长影响不同。次生针阔混交林中,去除草本显著促进四年生及以上幼苗高度生长,对一至三年生幼苗影响不显著;阔叶红松中去除草本显著促进一至三年生幼苗高度生长,对四年生及以上幼苗影响不显著。(3)除草处理后,水曲柳幼苗高度生长量在两处样地均显著增加,假色槭幼苗高度增长量只在次生针阔混交林中显著增加,而其他幼苗高度增长量只在阔叶红松林中显著增加。(4)次生针阔混交林中,幼苗存活率与草本多度和物种数呈正相关关系,与草本盖度无相关关系;阔叶红松林中幼苗存活率与草本物种数呈正相关关系,与草本多度和盖度无相...  相似文献   

4.
长白山原始林红松径向生长及林分碳汇潜力   总被引:1,自引:0,他引:1  
长白山地处温带针阔混交林的中心地带,其植物生长对气候变化反映较为敏感。运用树木年代学的基本原理与方法,以该区保存完好的地带性顶级群落阔叶红松林为研究对象,探讨了红松(Pinus koraiensis)径向生长对气候变化的响应,以期揭示全球气候变化对阔叶红松林及红松树木生长的影响。以长白山自然保护区北坡为研究地点,建立红松树轮年表,计算年均生物量生长量,与逐月各气候因子进行相关和响应函数分析,以期揭示红松径向生长与气候变化的关系。同时利用多元逐步回归分析方法分别建立了红松树轮指数、年均生物量生长量与主要气候因子的模拟回归方程。主要结论如下:(1)长白山红松年表特征分析表明其生长对气候变化敏感,适用于进行树轮气候学分析;(2)红松径向生长受当年生长季前期温度影响较大;(3)温度是限制红松径向生长的主要因子,气候变暖将促进红松的径向生长;(4)目前林分单位面积地上生物量为310.88t/hm~2,单位面积林分生物量生长量约为5.077t hm~(-2)a~(-1),即每公顷每年固碳约2.539t,表明该地区老龄阔叶红松林仍具有较强的固碳能力。  相似文献   

5.
阔叶丰花草是一种适用于华南果园生草控草的一年生植物。为了揭示阔叶丰花草与果园常见杂草之间的竞争关系,研究了阔叶丰花草与两种菊科植物(胜红蓟和白花鬼针草)之间的化感作用。结果表明: 10~50 mg·mL-1的阔叶丰花草水浸液处理显著抑制胜红蓟和白花鬼针草种子萌发和幼苗生长,胜红蓟和白花鬼针草的胚根长分别比对照降低57.4%~90.2%和57.3%~62.3%。胜红蓟和白花鬼针草水浸液对阔叶丰花草种子萌发也有较强的化感效应,在50 mg·mL-1的浓度处理下,阔叶丰花草种子几乎不能萌发。经10 mg·mL-1阔叶丰花草水浸液处理30 d后,胜红蓟播种苗的净光合作用、株高和生物量分别比对照降低15.2%、20.6%和41.5%,白花鬼针草播种苗的生物量也出现下降趋势;但胜红蓟和白花鬼针草水浸液处理对阔叶丰花草播种苗生长的影响均不显著。在混种条件下,阔叶丰花草的生物量与单种的水平相当,胜红蓟和白花鬼针草的生物量则分别比单种降低86.0%和27.1%。与胜红蓟和白花鬼针草相比,阔叶丰花草的化感优势在于除了能抑制对方的种子萌发,也能抑制其植株生长。  相似文献   

6.
采用皆伐法对南岭小坑800 m2小红栲 荷木次生群落(24 a)的生物量进行实测,并建立了生物量回归模型,分析群落地上部总生物量(AGB)在森林各层次、各树种及乔木层各器官中的分配规律.结果表明: 在亚热带次生常绿阔叶林,构建混合树种生物量模型的标准木数量最好在12株以上.基于伐倒实测265株阔叶乔木树木的群落混合阔叶树种地上生物量模型为:AGB=0.128D2.372和AGB=242.331(D2H)0.947,并且获得小红栲、荷木和萌条杉木单个树种的生物量模型.群落地上部总生物量为115.20 t·hm-2,其中,乔木层和下木层分别为111.25和1.01 t·hm-2,层间植物0.36 t·hm-2,凋落物层2.58 t·hm-2.小红栲和荷木分别占乔木层地上部总生物量的39.1%和28.7%.树干和枝叶生物量分别占乔木层地上部总生物量的81.0%和19.0%.  相似文献   

7.
应用Simpson和Shannon多样性指数及其相应的均匀度,对阔叶红松林及其次生白桦林的高等植物物种多样性进行了对比研究.结果表明,对于木本植物,次生白桦林物种多样性高于阔叶红松林;而对于草本植物,情况正好相反.但在次生白桦林中,无论木本植物还是草本植物,占优势的物种都是一些常见种,而许多阔叶红松林中的珍稀或特有物种在次生白桦林中数量很少,有些甚至完全消失.对群落各种群多度分布的检验表明,2种森林类型中,无论木本植物还是草本植物,各种群的多度分布都遵从对数级数分布.  相似文献   

8.
用水培微宇宙模拟人工湿地,研究植物丰富度对系统氮去除的影响,并整合多项功能评估系统净温室效应。选择水芹(Oenanthe javanica)、羊蹄(Rumex japonicus)、虉草(Phalaris arundinacea)和吉祥草(Reineckia carnea)4个物种,进行单种及混种2个处理,供给以硝氮(NO3--N)为唯一氮形态的模拟污水。结果表明:混种系统出水氮浓度显著低于单种系统,即高丰富度具有更高氮去除效率;混种系统的地上和总生物量显著高于单种系统;在单种系统中反硝化是最主要的氮去除途径,而混种系统主要通过增强植物吸收提高净化效率;混种系统比单种系统排放更多的CH4和N2O;混种提高了生物量,如果这些植物用于生物燃料则相当于强化了CO2减排潜力;综合CO2、CH4和N2O,提高植物丰富度会显著降低系统净增温潜力(GWP)。  相似文献   

9.
黄土丘陵区退耕还林(草)工程已实施20年,了解草地现状对该区草地生态系统保护与恢复调控措施选择具有重要意义。以安塞纸坊沟小流域内22个草地群落为研究对象,基于Ward聚类和非度量多维度排序(NMDS)方法,对草地类型、结构及其影响因素进行了分析。结果表明:(1)流域内草地共出现23科83种植物,其中禾本科、豆科和菊科物种重要值占比达75%—85%。草地可划分为狗尾草群丛、茵陈蒿群丛、甘草群丛、铁杆蒿群丛和白羊草群丛5类群丛。群丛间结构存在显著差异,狗尾草群丛盖度、地上生物量(AGB)、地下生物量(BGB)和根冠比均显著最低,但Shannon-Wiener指数和Pielou优势度指数均显著高于白羊草和铁杆蒿群丛。茵陈蒿、甘草与铁杆蒿群丛间AGB、BGB及多样性指数无显著差异。(2)功能群对群落结构产生显著影响,豆科矮草对AGB和BGB产生显著正效应,禾本科高草对BGB产生显著正效应,而菊科矮草对群落盖度与BGB产生显著负效应。(3)土壤有机碳(SOC)、全氮(TN)和全磷(TP)含量偏低(分别为6.21,0.82、0.53 g/kg),其中SOC和TN含量显著影响群丛物种组成、功能群和结...  相似文献   

10.
长白山阔叶红松林细根周转的研究   总被引:46,自引:2,他引:46  
系统研究了长白山阔叶红松林细根生物量、生产力、年周转率及其在净生产力分配中的作用,生物量调查结果表明,阔叶红松林活细根的生物量为5049kg.ha~(-1),死细根生物量的平均值为1883kg.ha~(-1),细根的年周转率为0.96,年生产量为4860kg.ha~(-1),约占总净初级生产力的19.40%,年死亡量为2343kg.ha~(-1),相当于阔叶红松林枯枝落叶年凋落量的60%,由此提出了森林凋落物应包括枯枝落叶和根系凋落物的论点。  相似文献   

11.
Herbivory tolerance can offset the negative effects of herbivory on plants and plays an important role in both immigration and population establishment. Biomass reallocation is an important potential mechanism of herbivory tolerance. To understand how biomass allocation affects plant herbivory tolerance, it is necessary to distinguish the biomass allocations resulting from environmental gradients or plant growth. There is generally a tight balance between the amounts of biomass invested in different organs, which must be analyzed by means of an allometric model. The allometric exponent is not affected by individual growth and can reflect the changes in biomass allocation patterns of different parts. Therefore, the allometric exponent was chosen to study the relationship between biomass allocation pattern and herbivory tolerance. We selected four species (Wedelia chinensis, Wedelia trilobata, Merremia hederacea, and Mikania micrantha), two of which are invasive species and two of which are accompanying native species, and established three herbivory levels (0%, 25% and 50%) to compare differences in allometry. The biomass allocation in stems was negatively correlated with herbivory tolerance, while that in leaves was positively correlated with herbivory tolerance. Furthermore, the stability of the allometric exponent was related to tolerance, indicating that plants with the ability to maintain their biomass allocation patterns are more tolerant than those without this ability, and the tendency to allocate biomass to leaves rather than to stems or roots helps increase this tolerance. The allometric exponent was used to remove the effects of individual development on allocation pattern, allowing the relationship between biomass allocation and herbivory tolerance to be more accurately explored. This research used an allometric model to fit the nonlinear process of biomass partitioning during the growth and development of plants and provides a new understanding of the relationship between biomass allocation and herbivory tolerance.  相似文献   

12.
Allocation, plasticity and allometry in plants   总被引:35,自引:0,他引:35  
Allocation is one of the central concepts in modern ecology, providing the basis for different strategies. Allocation in plants has been conceptualized as a proportional or ratio-driven process (‘partitioning’). In this view, a plant has a given amount of resources at any point in time and it allocates these resources to different structures. But many plant ecological processes are better understood in terms of growth and size than in terms of time. In an allometric perspective, allocation is seen as a size-dependent process: allometry is the quantitative relationship between growth and allocation. Therefore most questions of allocation should be posed allometrically, not as ratios or proportions. Plants evolve allometric patterns in response to numerous selection pressures and constraints, and these patterns explain many behaviours of plant populations.

In the allometric view, plasticity in allocation can be understood as a change in a plant's allometric trajectory in response to the environment. Some allocation patterns show relatively fixed allometric trajectories, varying in different environments primarily in the speed at which the trajectory is travelled, whereas other allocation patterns show great flexibility in their behaviour at a given size. Because plant growth is often indeterminate and its rate highly influenced by environmental conditions, ‘plasticity in size’ is not a meaningful concept. We need a new way to classify, describe and analyze plant allocation and plasticity because the concepts ‘trait’ and ‘plasticity’ are too broad. Three degrees of plasticity can be distinguished: (1) allometric growth (‘apparent plasticity’), (2) modular proliferation and local physiological adaptation, and (3) integrated plastic responses. Plasticity, which has evolved because it increases individual fitness, can be a disadvantage in plant production systems, where we want to optimize population, not individual, performance.  相似文献   


13.
嵌套式回归建立树木生物量模型   总被引:8,自引:0,他引:8       下载免费PDF全文
 该文介绍了一种建立树木生物量模型的简单快速方法——嵌套式回归。基本原理是以枝轴为基本单位, 逐级拟合。过程是把枝条分解成枝轴, 从枝轴到枝条, 再到单株, 拟合不同层次或尺度的生物量模型。建立枝轴生物量方程, 估计各级枝轴生物量, 将枝轴生物量(实测值或模拟值)总和起来便得到枝条生物量。由于样本单元之间有包含关系, 实际测定的样本很小, 具有快速实用的特点。检验结果显示, 模型预测值和实测值具有较高的一致性。  相似文献   

14.
We investigated allocation to roots, stems and leaves of 27 species of herbaceous clonal plants grown at two nutrient levels. Allocation was analyzed as biomass ratios and also allometrically. As in other studies, the fraction of biomass in stems and, to a lesser extent, in leaves, was usually higher in the high-nutrient treatment than in the low-nutrient treatment, and the fraction of biomass in roots was usually higher under low-nutrient conditions. The relationship between the biomass of plant structures fits the general allometric equation, with an exponent 1 in most of the species. The different biomass ratios under the two nutrient conditions represented points on simple allometric trajectories, indicating that natural selection has resulted in allometric strategies rather than plastic responses to nutrient level. In other words, in most of the species that changed allocation in response to the nutrient treatment, these changes were largely a consequence of plant size. Our data suggest that some allocation patterns that have been interpreted as plastic responses to different resource availabilities may be more parsimoniously explained as allometric strategies.  相似文献   

15.
Eelgrass (Zostera marina) populations supply substantial amounts of organic materials to food webs in shallow coastal environments, provide habitat for many fishes and their larvae and abate erosion. The characterisation of eelgrass biomass dynamics is an important input for the assessment of the function and values for this important seagrass species. We here present original allometric methods for the non‐destructive estimation of above‐ground biomass of eelgrass. These assessments are based on measurements of lengths and areas of leaves and sheaths and mathematical models that can be identified by means of standard regression procedures. The models were validated by using data obtained from Z. marina meadows in the Punta Banda estuary B.C., Mexico, and in Jindong Bay, Korea. Using available data and concordance correlation index criteria we show that the values projected thorough the presented allometric paradigm reproduces observed values in a consistent way. The annual average value for observed above‐ground biomass was 1.46 ± 0.15 g shoot?1, while the corresponding calculated value was 1.40 ± 0.13 g shoot?1. We suggest that our method can be applied to other studies in which the architecture and growth form of leaves and sheaths are similar to those of eelgrass. This would provide reliable and simplified estimations of biomass while eliminating tedious laboratory processing and avoiding destructive sampling.  相似文献   

16.
臭冷杉生物量分配格局及异速生长模型   总被引:4,自引:0,他引:4  
汪金松  张春雨  范秀华  赵亚洲 《生态学报》2011,31(14):3918-3927
摘 要:臭冷杉是长白山阔叶红松林中重要针叶树种,采用整株收获法分析21株臭冷杉地上地下生物量分配格局。在枝条水平上采用样枝直径(BD)、样枝长度(BL)、样枝所在轮生枝位置(WP)建立活枝、针叶生物量异速生长模型,在植株水平上采用胸径(DBH)、树高(H)、年龄(Age)、树冠长度(CL)、树冠比率(CR)、南北向冠幅(CW1)、东西向冠幅(CW2)等变量建立树干木质、树皮、活枝、针叶、粗根及整株生物量模型。并利用逐步线性回归法获得不同器官生物量最优模型。结果表明:(1)活枝生物量主要集中在树冠中下层,针叶生物量集中在树冠中层。树冠中层和下层枝叶生物量无显著差异(p>0.05);(2)21株臭冷杉地上生物量和地下生物量变动范围分别为1.026–506.047 kg/株和0.241–112.000 kg/株。粗根、活枝、针叶、树干木质、树皮及枯枝生物量占整株生物量的相对比例分别为18.68%、18.39%、12.02%、39.29%、8.70%和2.92%;(3)地上生物量与地下生物量呈显著线性相关(p<0.001),拟合线性方程斜率为0.23;(4)枝条水平上,活枝生物量模型解释量超过95%,平均预测误差小于30%。与单变量(BD)活枝生物量模型相比,2变量(BD、BL)和3变量(BD、BL、WP)模型解释量分别提高1.2%和2.0%,平均预测误差分别下降6.26%和9.27%。针叶生物量相对较难预测,模型解释量仅为82.7%,平均预测误差接近50%,模型中增加BL 和WP变量并未提高针叶生物量的预测精度。活枝生物量与BD、BL、WP正相关,针叶生物量与BD正相关,与BL、WP负相关;(5)植株水平上,基于胸径的单变量模型可解释量大于90%,增加树高变量未能显著提高生物量模型的预测精度。年龄决定了臭冷杉的树干生物量,忽视年龄变量将会产生生物量预测误差。树冠特征是影响枝叶生物量预测精度的重要变量。综合考虑模型的可解释量及回归系数显著性可知,胸径是预测臭冷杉不同器官生物量的可靠变量。  相似文献   

17.
红壤丘陵区林下灌木生物量估算模型的建立及其应用   总被引:10,自引:0,他引:10  
以中国科学院千烟洲生态试验站林下常见的16种物种作为研究对象,构建了单一物种以植冠面积(Ac)为变量的二次方程和以植冠投影体积(Vc)为变量的乘幂方程来估算物种生物量,以及16种物种的混合模型来估算其生物量,并将最佳生物量估算模型应用于不同森林内灌木层生物量的估计.不同森林的灌木层生物量组成存在较大差异.以物种单一模型计算的落叶阔叶林、次生林、人工针叶林灌木层的生物量分别为4773、3175和733kg.hm-2;以物种混合模型估算的结果略低于单一模型,分别为3946、2772和840kg.hm-2.混合模型在未能对所有物种建立单一模型的情况下估算灌木层生物量时,具有简便、实用性的特点.  相似文献   

18.
生物量分配模式影响着植物个体生长和繁殖到整个群落的质量和能量流动等所有层次的功能, 揭示高寒灌丛的生物量分配模式不仅可以掌握植物的生活史策略, 而且对理解灌丛碳汇不确定性具有重要意义。该研究以甘肃南部高山-亚高山区的常绿灌丛——杜鹃(Rhododendron spp.)灌丛的7个典型种为对象, 采用全株收获法研究了不同物种个体水平上各器官生物量的分配比例和异速生长关系。结果表明: 7种高寒杜鹃根、茎、叶生物量的分配平均比例为35.57%、45.61%和18.83%, 各器官生物量分配比例的物种差异显著; 7种高寒杜鹃的叶与茎、叶与根、茎与根以及地上生物量与地下生物量之间既有异速生长关系, 也有等速生长关系, 异速生长指数不完全支持生态代谢理论和小个体等速生长理论的参考值; 各器官异速生长关系的物种差异显著。结合最优分配理论和异速生长理论能更好地解释陇南山地7种高寒杜鹃生物量的变异及适应机制。  相似文献   

19.
郭浩  庄伟伟  李进 《植物研究》2019,39(3):421-430
对于荒漠植物不同生长期生物量分配和化学计量比的研究有助于深入了解荒漠植物的功能结构,更好掌握环境对植物的生存影响。本研究选取古尔班通古特沙漠4种一年生荒漠草本植物沙蓬(Agriophyllum sqarrosum(L.)Moq.)、雾冰藜(Bassssia dasyphylla(Fisch.et Mey.)O.Kuntze)、角果藜(Ceratocarpus arenarius L.)和碱蓬(Suaeda glauca(Bge.)Bge.)对比研究了4种生物量分配与N、P化学计量学随植物生长的变化。结果显示:(1)4种荒漠植物生物量积累配过程中,根冠比随生长季的延长逐渐降低。地上、地上生物量相关生长关系表明,角果藜为等速→异速的变化过程,沙蓬从采样初期至末期的变化过程为异速→等速生长,而沙蓬和碱蓬的相关生长指数相反,分别为异速→等速→异速、等速→异速→等速的变化格局;(2)4种植物N、P含量随生长期的延长逐步降低。在整个生长季节4种植物的N与P含量的变化趋势均为相似。(3)植物N、P含量间达到正相关显著,除沙蓬和雾冰藜的N:P之外其余指标分别与植物的地上、地下生物量及总生物量间呈负相关显著,而根冠比、相关生长指数与化学计量特征间未达到显著水平,表明了二者较弱的相关性。研究表明,4种荒漠草本植物生物量与化学计量特征的相关性不大,说明化学计量比并不是影响植物生物量及生活策略的主要因素,而更多是受植物自身遗传特性的影响。同时也体现了荒漠草本植物在养分匮乏的条件下,形成了自身独特的生理生态特征,且具有相对稳定的适应特性。  相似文献   

20.
 当年生小枝是多年生植物体上最活跃的部分之一, 其生物量分配是植物生活史对策研究的一个重要内容。该文采用标准化主轴估计(Standardized major axis estimation, SMA)和系统独立比较分析(Phylogenetically independent contrast analysis, PIC)的方法, 研究了杜鹃花属(Rhododendron)植物一年生小枝的大小对小枝叶片、叶柄和茎的生物量分配的影响, 以及对叶面积支持效率(即单位质量小枝支持的叶面积)的影响。结果显示: 1)小枝大小对叶片生物量分配比率的影响不显著, SMA斜率为1.040 (95%的置信区间(CI)=0.998~1.085); 但是, 小枝越大, 叶柄生物量分配比例越高(SMA斜率为1.245, 显著大于1.0, 呈显著的异速生长关系)。2)小枝越小, 单叶面积越小(支持Corner法则), 单位质量小枝所支持的叶面积越大, 即具有较小枝条和较小叶片的物种可能具有较高的叶面积支持效率。这些结果有助于我们更好地理解亲缘关系十分接近的杜鹃花属植物, 在不同生境条件下叶片大小的差异, 以及为什么在胁迫生境条件下小叶物种更为常见。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号