首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
目的 为了构建人分泌型磷脂酶A2(secretary phospholipase A2, sPLA2-IIA) 的有效表达系统,本文从胎脾中提取总RNA,采用RT-PCR方法扩增出编码sPLA2-IIA的基因定向地克隆于硫氧环蛋白基因融合表达载体pET32a的TrxA基因3’末端,构建符合读码框的融合表达载体pET32a-sPLA2-IIA。37℃下经IPTG诱导,hsPLA2-IIA融合蛋白在大肠杆菌BL21(DE3)中获得高效表达,表达产物以包涵体的形式存在。包涵体经8M尿素溶解、复性后检测结果显示具有较高的催化活性并呈现剂量依赖关系。结论:以大肠杆菌为宿主,成功表达了hsPLA2-IIA蛋白,为进一步进行hsPLA2-IIA的大量生产和功能研究奠定了基础。  相似文献   

2.
目的为了构建人分泌型磷脂酶A2(secretaryphospholipaseA2,sPLA2-IIA)的有效表达系统,从胎脾中提取总RNA。方法采用RT-PCR方法扩增出编码sPLA2-IIA的基因定向地克隆于硫氧环蛋白基因融合表达载体pET32a的TrxA基因3′末端,构建符合读码框的融合表达载体pET32a-sPLA2-IIA。37℃下经IPTG诱导,hsPLA2-IIA融合蛋白在大肠杆菌BL21(DE3)中获得高效表达,表达产物以包涵体的形式存在。包涵体经8mol/L尿素溶解、复性后检测结果显示具有较高的催化活性并呈现剂量依赖关系。结论以大肠杆菌为宿主,成功表达了hsPLA2-IIA蛋白,为进一步进行hsPLA2-IIA的大量生产和功能研究奠定了基础。  相似文献   

3.
摘要 目的:探究血清sPLA2-X、8-羟基-2''-脱氧鸟苷及hs-CRP水平诊断慢性阻塞性肺疾病急性加重的价值。方法:随机选取2021年3月~2023年11月在我院进行治疗的COPD患者128例,以患者是否出现急性加重分为稳定组和AECOPD组,其中稳定组29例,AECOPD组99例。比较两组研究对象外周血sPLA2-X、8-OHdG及hs-CRP水平水平差异;COX比例风险因素回归模型分析AECOPD的影响因素,采用ROC曲线分析相关指标单独及联合检测诊断AECOPD的价值。结果:AECOPD组FEV1指标显著低于稳定组,差异具有统计学意义(P<0.05)。与稳定组组相比,AECOPD组患者外周血sPLA2-X、8-OHdG及hs-CRP水平均明显升高,差异具有统计学意义(P<0.01)。外周血sPLA2-X、8-OhdG、hs-CRP水平与GOLD分级成正相关(P<0.05),外周血sPLA2-X、8-OhdG、hs-CRP水平与FEV1/FVC(%)、FEV1%pred成负相关(P<0.05)。采用COX比例风险因素回归模型分析,外周血sPLA2-X、8-OhdG、hs-CRP均为影响AECOPD的独立危险因素。ROC曲线分析外周血sPLA2-X、8-OhdG、hs-CRP诊断AECOPD的曲线下面积(AUC)分别为0.689、0.708、0.642、0.875,联合各指标预测价值明显高于单独检测。结论:AECOPD 患者外周血sPLA2-X、8-OhdG、hs-CRP水平高表达。外周血sPLA2-X、8-OhdG、hs-CRP水平与肺功能严重程度、肺功能指标相关,同时三者可用作诊断COPD患者急性加重的潜在预测指标。三者联合具有更高的诊断价值。  相似文献   

4.
真核生物细胞各种膜结构两侧的磷脂分布是不对称的,这种不对称需要磷脂翻转酶的动态调节.目前认为这些酶可以分为三种,即爬行酶类、外翻酶类和内翻酶类,对于它们的研究才刚刚起步.P型ATP酶第四类亚型被认为有潜在的磷脂内翻酶活性,酵母全部5个该家族的蛋白质如DRS2p都陆续被确定了具有磷脂内翻酶的活性.对于酵母内翻酶的研究还发现该类蛋白质对于细胞极性建立和膜泡运输有重要作用.哺乳动物中由基因组比对发现有14个P型ATP酶第四类亚型成员,但对于它们的研究仅局限于病理方面.为了能够了解哺乳动物磷脂内翻酶在细胞内活动的分子机制,克隆了酵母DRS2p在哺乳动物中的同源物ATP8A2的编码基因,并发现了它的两种剪切亚型.通过对它们的组织分布分析,发现该蛋白质主要分布在睾丸中,提示它可能对于精子的发生有一定功能.  相似文献   

5.
膜联蛋白Ⅰ的结构和功能   总被引:12,自引:0,他引:12  
膜联蛋白Ⅰ(annexin Ⅰ)是annexins蛋白超家族中的一员,是结构相关钙离子依赖的磷脂结合蛋白.具有annexins超家族所共有的中心结构域和承担各自独特功能的N端结构域.通过调控细胞内磷脂囊泡的聚集、炎症反应和磷脂酶A2的活性而参与细胞信号传导、细胞分化和细胞凋亡等细胞重要的生命过程.  相似文献   

6.
毕丹  徐扬  逄越  李庆伟 《遗传》2015,37(2):140-147
磷脂酰丝氨酸(Phosphatidylserine, PS)是细胞质膜重要的磷脂成分之一,具有重要的生物学功能。在细胞凋亡及一些特殊的病理条件下,细胞内ATP供能不足,胞浆Ca2+浓度升高,引起PS发生外翻。PS外翻在不同类型细胞中具有不同的生物学功能,且外翻的程度与疾病发展程度密切相关,可作为癌症等多种疾病治疗的靶标。文章综述了细胞质膜中磷脂酰丝氨酸的重要生物学功能和意义、磷脂酰丝氨酸外翻的分子机制及在临床医学方面的应用,以期对未来的功能和临床应用研究提供参考。  相似文献   

7.
就三磷酸腺苷结合盒转运体A1(ABCA1)的结构、功能及调控研究的最新进展作一综述.ABCA1是一种膜整合蛋白,它具有多种复杂的功能,能介导细胞内磷脂和胆固醇流出到贫脂载脂蛋白A-I,并且在高密度脂蛋白代谢过程中起重要作用.人类ABCA1变异将引起严重的高密度脂蛋白不足,其特征为载脂蛋白A-I和高密度脂蛋白缺陷以及动脉粥样硬化.ABCA1的表达受到多种物质高度调控.细胞核受体主要通过作用于ABCA1启动子DR4元件参与调节ABCA1表达.第二信使环磷酸腺苷通过作用于转录水平和翻译水平上调ABCA1表达.细胞因子对ABCA1转录具有多效性和矛盾效应.除此以外,各种蛋白质和酶类如蛋白激酶A,蛋白激酶CK2,组织蛋白酶D也参与ABCA1表达调控.  相似文献   

8.
植物膜联蛋白属于D类膜联蛋白是在植物中的一类钙和磷脂结合蛋白。植物膜联蛋白约占植物总蛋白含量的0.1%,与动物膜联蛋白在分子量、氨基酸序列及Ca~(2+)与磷脂结合的能力上,都拥有较高的同源性。植物膜联蛋白的亚细胞定位具有多样性,与胞质Ca~(2+)浓度、细胞所处pH、植物组织及外界环境有关。植物膜联蛋白的表达具有组织特异性,且受到各种生物及非生物因子在转录及翻译后水平的调控。植物膜联蛋白具有与植物肌动蛋白结合、参与钙离子通道形成、膜动力学功能、具有ATPase/GTPase及过氧化物酶活性等生物功能,在植物生长发育及响应逆境胁迫过程中起重要作用。本综述从植物膜联蛋白的进化、结构、亚细胞定位、表达调控和生物学功能方面进行综述,旨在为深入研究植物膜联蛋白的功能及其应用提供参考。  相似文献   

9.
ABCA1在动脉粥样硬化发生与发展中的作用   总被引:16,自引:0,他引:16  
腺苷三磷酸结合盒转运体A1(ATP binding cassette transporter A1 ,ABCA1)是一种整合膜蛋白,它以ATP为能源,促进细胞内游离胆固醇和磷脂的流出,在胆固醇逆转运(RCT)和HDL生成的起始步骤中起重要作用,被称作RCT守门人。核受体PPARs、LXRs和FXR对ABCA1蛋白的表达具有调控作用。人体50种组织中存在有ABCA1 mRNA,在胰、肝、肺、肾上腺和胎儿组织中ABCAl表达水平最高,ABCAl功能障碍将导致巨噬细胞内大量的胆固醇沉积而成为泡沫细胞,继而漫润血管壁,促进As的发生发展。  相似文献   

10.
目的:以实验室养殖和市场销售的正常三疣梭子蟹为研究对象,探究饲料磷脂水平对甲壳动物酚氧化酶活性的影响,为三疣梭子蟹的营养免疫学研究和梭子蟹饲料的开发提供科学依据。方法:将达到试验规格的三疣梭子蟹随机分成A1、A2、B1、B2四组。A1和A2组为蛋黄磷脂平行组,用以投喂该两组的配合饲料中添加足量蛋黄磷脂为主要磷脂源。B1和B2组为大豆磷脂平行组,用以投喂组B1、B2的配合饲料中添加足量大豆磷脂为主要磷脂源。人工饲养8周后,从A1、A2、B1、B2各组随机抽取4只蟹,测定其血清和HLS的酚氧化酶活性,并与市场组(C组)梭子蟹血清和HLS的酚氧化酶活性作比较。结果:血细胞样本中,市场组总活力均值为2.67,高于试验各组的活力均值(1.13~1.47),差异显著,而试验各组之间没有显著性差异。A1、A2、B1、B2四组比活率分别为0.58、0.38、0.49、0.32,四组之间不存在显著性差异,而市场组比活率为2.20,显著低于试验各组。血清样本中,试验各组的总活力值均在1.40~1.99之间,组间不存在显著性差异;A1、B1、B2组的比活率值都在1.97~2.68之间,无显著差异。B组比活率平均值为4.44,与A1、B1、B2组有显著差异。结论:作为磷脂源,卵黄磷脂和大豆磷脂对梭子蟹HLS的酚氧化酶活性均无显著影响,而试验组血清酚氧化酶活性比活率明显高于市场组,说明在一定程度上,卵黄磷脂和大豆磷脂对血清中的酚氧化酶活性有促进作用。  相似文献   

11.
Mammalian secreted phospholipases A(2) (sPLA(2)s) constitute a family of structurally related enzymes that are likely to play numerous biological roles because of their phospholipid hydrolyzing activity and binding to soluble and membrane-bound proteins, including the M-type receptor. Over the past decade, a number of competitive inhibitors have been developed against the inflammatory-type human group IIA (hGIIA) sPLA(2) with the aim of specifically blocking its catalytic activity and pathophysiological functions. The fact that many of these inhibitors, including the indole analogue Me-Indoxam, inhibit several other sPLA(2)s that bind to the M-type receptor prompted us to investigate the impact of Me-Indoxam and other inhibitors on the sPLA(2)-receptor interaction. By using a Ca(2+) loop mutant derived from a venom sPLA(2) which is insensitive to hGIIA inhibitors but still binds to the M-type receptor, we demonstrate that Me-Indoxam dramatically decreases the affinity of various sPLA(2)s for the receptor, yet an sPLA(2)-Me-Indoxam-receptor complex can form at very high sPLA(2) concentrations. Me-Indoxam inhibits the binding of iodinated mouse sPLA(2)s to the mouse M-type receptor expressed on live cells but also enhances binding of sPLA(2) to phospholipids. Because Me-Indoxam and other competitive inhibitors protrude out of the sPLA(2) catalytic groove, it is likely that the inhibitors interfere with the sPLA(2)-receptor interaction by steric hindrance and to different extents that depend on the type of sPLA(2) and inhibitor. Our finding suggests that the various anti-inflammatory therapeutic effects of sPLA(2) inhibitors may be due not only to inhibition of enzymatic activity but also to modulation of binding of sPLA(2) to the M-type receptor or other as yet unknown protein targets.  相似文献   

12.
We investigated the hydrolysis of the minor glycerophospholipids of human HDL(3), total HDL and LDL using human group IIA, V and X secretory phospholipases A(2) (sPLA(2)s). For this purpose we employed the enzyme and substrate concentrations and incubation times optimized for hydrolysis of phosphatidylcholine (PtdCho), the major glycerophospholipid of plasma lipoproteins. In contrast to PtdCho, which was readily hydrolyzed by group V and X sPLA(2)s, and to a lesser extent by group IIA sPLA(2), the minor ethanolamine, inositol and serine glycerophospholipids exhibited marked resistance to hydrolysis by all three sPLA(2)s. Thus, when PtdCho was hydrolyzed about 80%, the ethanolamine and inositol glycerophospholipids reached a maximum of 40% hydrolysis. The hydrolysis of phosphatidylserine (PtdSer), which was examined to a more limited extent, showed similar resistance to group IIA, V and X sPLA(2)s, although the group V sPLA(2) attacked it more readily than group X sPLA(2) (52% versus 39% hydrolysis, respectively). Surprisingly, the group IIA sPLA(2) hydrolysis remained minimal at 10-15% for all minor glycerophospholipids, and was of the order seen for the PtdCho hydrolysis by group IIA sPLA(2) at the 4-h digestion time. All three enzymes attacked the oligo- and polyenoic species in proportion to their mole percentage in the lipoproteins, although there were exceptions. There was evidence of a more rapid destruction of the palmitoyl compared to the stearoyl arachidonoyl glycerophospholipids. Overall, the characteristics of hydrolysis of the molecular species of the lipoprotein-bound diradyl GroPEtn, GroPIns and GroPSer by group V and X sPLA(2)s differed significantly from those observed with lipoprotein-bound PtdCho. As a result, the acidic inositol and serine glycerophospholipids accumulated in the digestion residues of both LDL and HDL, and presumably increased the acidity of the residual particles. An accumulation of the ethanolamine glycerophospholipids in the sPLA(2) digestion residues also had not been previously reported. These results further emphasize the diversity in the enzymatic activity of the group IIA, V and X sPLA(2)s. Since these sPLA(2)s possess comparable tissue distribution, their combined activity may exacerbate their known proinflammatory and proatherosclerotic function.  相似文献   

13.
We have previously shown the expression of group X secretory phospholipase A(2) (sPLA(2)-X) in mouse splenic macrophages and its powerful potency for releasing fatty acids from various intact cell membranes. Here, we examined the potency of sPLA(2)-X in the production of lipid mediators in murine peritoneal macrophages. Mouse sPLA(2)-X was found to induce a marked release of fatty acids including arachidonic acid and linoleic acid, which contrasted with little, if any, release by the action of group IB and IIA sPLA(2)s. In resting macrophages, sPLA(2)-X elicited a modest production of prostaglandin E(2) and thromboxane A(2). After the induction of cyclooxygenase-2 (COX-2) by pretreatment with lipopolysaccharide, a dramatic increase in the production of these eicosanoids was observed in sPLA(2)-X-treated macrophages, which was completely blocked by the addition of either the specific sPLA(2) inhibitor indoxam or the COX inhibitor indomethacin. In accordance with its higher hydrolyzing activity toward phosphatidylcholine, mouse sPLA(2)-X induced a potent production of lysophosphatidylcholine. These findings strongly suggest that sPLA(2)-X plays a critical role in the production of various lipid mediators from macrophages. These events might be relevant to the progression of various pathological states, including chronic inflammation and atherosclerosis.  相似文献   

14.
An increasing number of mammalian secreted phospholipases A(2) (sPLA(2)s) has been identified over the past few years. Here, we report the identification and recombinant expression of a novel sPLA(2)-like protein in mouse and human species that has been called group XIIB (GXIIB). The mature protein has a molecular mass of 19.7 kDa and structural features similar to those of the previously identified GXII sPLA(2), now called GXIIA. Strikingly, the GXIIB sPLA(2) has a mutation in the active site, replacing the canonical histidine by a leucine, suggesting that this sPLA(2) is catalytically inactive. Recombinant expression of human (hGXIIB) and mouse (mGXIIB) sPLA(2)s in Escherichia coli indicates that GXIIB sPLA(2)s display no measurable lipolytic activity on various types of phospholipid substrates. Furthermore, these sPLA(2)-like proteins display relatively weak affinity to phospholipid vesicles. Binding experiments indicate that these proteins are also unable to bind to the well-known M-type sPLA(2) receptor. The RNA tissue distribution of GXIIB sPLA(2)s is distinct from that of other sPLA(2)s including the homologous GXIIA. Strong expression was observed in liver, small intestine, and kidney in both human and mouse species. Interestingly, the expression of the novel sPLA(2) is dramatically decreased in human tumors from the same tissues. The absence of enzymatic activity suggests that the GXIIB sPLA(2)-like proteins probably exert their biological roles by acting as ligands for as yet unidentified receptors.  相似文献   

15.
Among mammalian secreted phospholipases A(2) (sPLA(2)s), group X sPLA(2) has the most potent hydrolyzing activity toward phosphatidylcholine and is involved in arachidonic acid (AA) release. Group X sPLA(2) is produced as a proenzyme and contains a short propeptide of 11 amino acids ending with a dibasic motif, suggesting cleavage by proprotein convertases. Although the removal of this propeptide is clearly required for enzymatic activity, the cellular location and the protease(s) involved in proenzyme conversion are unknown. Here we have analyzed the maturation of group X sPLA(2) in HEK293 cells, which have been extensively used to analyze sPLA(2)-induced AA release. Using recombinant mouse (PromGX) and human (ProhGX) proenzymes; HEK293 cells transfected with cDNAs coding for full-length ProhGX, PromGX, and propeptide mutants; and various permeable and non-permeable sPLA(2) inhibitors and protease inhibitors, we demonstrate that group X sPLA(2) is mainly converted intracellularly and releases AA before externalization from the cell. Most strikingly, the exogenous proenzyme does not elicit AA release, whereas the transfected proenzyme does elicit AA release in a way insensitive to non-permeable sPLA(2) inhibitors. In transfected cells, a permeable proprotein convertase inhibitor, but not a non-permeable one, prevents group X sPLA(2) maturation and partially blocks AA release. Mutations at the dibasic motif of the propeptide indicate that the last basic residue is required and sufficient for efficient maturation and AA release. All together, these results argue for the intracellular maturation of group X proenzyme in HEK293 cells by a furin-like proprotein convertase, leading to intracellular release of AA during secretion.  相似文献   

16.
Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects. Although sPLA(2)-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA(2)-X. In addition, the requirement of Ca(2+) for the lipolysis of LDL was about 10-fold higher for sPLA(2)-V than sPLA(2)-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA(2)-V in the presence of sodium citrate, which contrasted with the potent response to sPLA(2)-X. Moreover, sPLA(2)-X, but not sPLA(2)-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA(2)-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (K(d) = 3.1 nM) in the presence of Ca(2+). Selective interaction of sPLA(2)-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation.  相似文献   

17.
18.
Secretory phospholipases A2 (sPLA2s) are a group of extracellular enzymes that release fatty acids at the sn-2 position of phospholipids. Group IIA sPLA2 has been detected in inflammatory fluids, and its plasma level is increased in inflammatory diseases. To investigate a potential mechanism of sPLA2-induced inflammation we studied the effect of group IA (from cobra venom) and group IIA (human synovial) sPLA2s on human macrophages. Both sPLA2s induced a concentration- and Ca2+-dependent, noncytotoxic release of beta-glucuronidase (16.2 +/- 2.4% and 13.1 +/- 1.5% of the total content with groups IA and IIA, respectively). Both sPLA2s also increased the rate of secretion of IL-6 and enhanced the expression of IL-6 mRNA. Preincubation of macrophages with inhibitors of the hydrolytic activity of sPLA2 or cytosolic PLA2 did not influence the release of beta-glucuronidase. Incubation of macrophages with p-aminophenyl-mannopyranoside-BSA (mp-BSA), a ligand of the mannose receptor, also resulted in beta-glucuronidase release. However, while preincubation of macrophages with mp-BSA had no effect on beta-glucuronidase release induced by group IIA sPLA2, it enhanced that induced by group IA sPLA2. A blocking Ab anti-mannose receptor inhibited both mp-BSA- and group IIA-induced beta-glucuronidase release. Taken together, these data indicate that group IA and IIA sPLA2s activate macrophages with a mechanism independent from their enzymatic activities and probably related to the activation of the mannose receptor or sPLA2-specific receptors. The secretion of enzymes and cytokines induced by sPLA2s from human macrophages may play an important role in inflammation and tissue damage associated with the release of sPLA2s.  相似文献   

19.
Over the last decade, an expanding diversity of secreted phospholipases A(2) (sPLA(2)s) has been identified in mammals. Here, we report the cloning in mice of three additional sPLA(2)s called mouse group IIE (mGIIE), IIF (mGIIF), and X (mGX) sPLA(2)s, thus giving rise to eight distinct sPLA(2)s in this species. Both mGIIE and mGIIF sPLA(2)s contain the typical cysteines of group II sPLA(2)s, but have relatively low levels of identity (less than 51%) with other mouse sPLA(2)s, indicating that these enzymes are novel group II sPLA(2)s. However, a unique feature of mGIIF sPLA(2) is the presence of a C-terminal extension of 23 amino acids containing a single cysteine. mGX sPLA(2) has 72% identity with the previously cloned human group X (hGX) sPLA(2) and displays similar structural features, making it likely that mGX sPLA(2) is the ortholog of hGX sPLA(2). Genes for mGIIE and mGIIF sPLA(2)s are located on chromosome 4, and that of mGX sPLA(2) on chromosome 16. Northern and dot blot experiments with 22 tissues indicate that all eight mouse sPLA(2)s have different tissue distributions, suggesting specific functions for each. mGIIE sPLA(2) is highly expressed in uterus, and at lower levels in various other tissues. mGIIF sPLA(2) is strongly expressed during embryogenesis and in adult testis. mGX sPLA(2) is mostly expressed in adult testis and stomach. When the cDNAs for the eight mouse sPLA(2)s were transiently transfected in COS cells, sPLA(2) activity was found to accumulate in cell medium, indicating that each enzyme is secreted and catalytically active. Using COS cell medium as a source of enzymes, pH rate profile and phospholipid headgroup specificity of the novel sPLA(2)s were analyzed and compared with the other mouse sPLA(2)s.  相似文献   

20.
To date, 12 secreted phospholipases A2 (sPLA2s) have been identified in the mouse species and divided into three structural collections (I/II/V/X, III, and XII). On the basis of their different molecular properties and tissue distributions, each sPLA2 is likely to exert distinct functions by acting as an enzyme or ligand for specific soluble proteins or receptors, among which the M-type receptor is the best-characterized target. Here, we present the properties of binding of the full set of mouse sPLA2s to the mouse M-type receptor. All enzymes have been produced in Escherichia coli or insect cells, and their properties of binding to the cloned and native M-type receptor have been determined. sPLA2s IB, IIA, IIE, IIF, and X are high-affinity ligands (K0.5 = 0.3-3 nM); sPLA2s IIC and V are low-affinity ligands (K0.5 = 30-75 nM), and sPLA2s IID, III, XIIA, and XIIB bind only very weakly or do not bind to the M-type receptor (K0.5 > 100 nM). Three exogenous parvoviral group XIII PLA2s and two fungal group XIV sPLA2s do not bind to the receptor. Together, these results indicate that the mouse M-type receptor is selective for only a subset of mouse sPLA2s from the group I/II/V/X structural collection. Binding of mouse sPLA2s to a recombinant soluble mouse M-type receptor leads in all cases to inhibition of enzymatic activity, and the extent of deglycosylation of the receptor decreases yet does not abolish sPLA2 binding. The physiological meaning of binding of sPLA2 to the M-type receptor is discussed on the basis of our current knowledge of sPLA2 functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号