首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
作为真核细胞的一种重要细胞器的线粒体含有独立的并自主复制和转录的DNA基因组。虽然线粒体蛋白质的大部分系核DNA编码,但有一小部分是线粒体DNA(mt DNA)编码,并由线粒体的蛋白质合成系统合成。线粒体蛋白质合成系统中的rRNA和tRNA也是mt DNA编码。mt DNA的复制、转录以及蛋白质合成系统均有其本身特点,既与非线粒体真核系统有所不同,又有别于原核细胞中者。因此,线粒体基因组的研究在生物学上有重要意义。此外,线粒体的起源和进化是许多生物学家所感兴趣的和长期争论的问题,而mt DNA的进化比较  相似文献   

3.
作为真核细胞的一种重要细胞器的线粒体含有独立的并自主复制和转录的DNA基因组。虽然线粒体蛋白质的大部分系核DNA编码,但有一小部分是线粒体DNA(mt DNA)编码,并由线粒体的蛋白质合成系统合成。线粒体蛋白质合成系统中的rRNA和tRNA也是mt DNA编码。mt DNA的复制、转录以及蛋白质合成系统均有其本身特点,既与非线粒体真核系统有所不同,又有别于原核细胞中者。因此,线粒体基因组的研究在生物学上有重要意义。此外,线粒体的起源和进化是许多生物学家所感兴趣的和长期争论的问题,而mt DNA的进化比较  相似文献   

4.
遗传性线粒体DNA(mitochondrial DNA,mt DNA)疾病通过母亲遗传给下一代,引起破坏性的临床结果。因无有效的治疗方法,故预防该疾病向子代传递成为首选。在患者卵子与健康者的卵子之间进行核置换,可阻止突变mt DNA向子代传递,这一技术称为线粒体捐赠。该研究成果发表前,线粒体捐赠技术包括原核移植和纺锤体移植,但这两种手段都不能彻底阻止疾病线粒体向子代传递。结果发现:极体中线粒体含量极少并与卵子拥有相同的基因组物质,故有望成为线粒体捐赠的首选核供体。基于此,利用小鼠模型比较了四种不同的生殖细胞基因组(纺锤体–染色体复合物、原核、第一极体、第二极体)移植的特点和有效性。研究结果显示,重构卵/胚胎支持正常受精、发育及诞生后代。遗传分析证实:相对于纺锤体–染色体和原核移植,极体移植产生的F1代体内携带的核供体来源的mt DNA量极少,其中第一极体移植(first polar body transfer,PB1T)子代中未检测到核供体来源的线粒体。更重要的是,mt DNA基因型在极体移植后的子二代中仍保持稳定,提示极体基因组移植有望阻止遗传性线粒体疾病向子代的遗传。  相似文献   

5.
线粒体DNA修复系统相关酶的研究进展   总被引:5,自引:0,他引:5  
朱克军  汪振诚  王学敏 《遗传》2004,26(2):274-282
线粒体DNA(mtDNA)编码线粒体电子传递系统的亚单位以及构建翻译机器所需的各种rRAN和tRNA。mtDNA编码的每一个亚单位都是线粒体完成正常的氧化磷酸化过程所必需的,因此,线粒体DNA的完整性对于生物体的生存十分重要。长期以来,人们一直认为线粒体中不存在DNA的修复。近年来在线粒体提取物中却检测到了一定数量的修复因子,提示线粒体中存在DNA的修复。主要对线粒体修复系统中相关酶的研究进展进行综述。Abstract: Mitochondrial DNA(mtDNA) encodes subunits of the mitochondrial electron transport system and the rRNAs and tRNAs required for constructing the mitochondrial tranlational machinery.Each subunit encoded by mtDNA is essential for normal oxidative phosphorylation.Thus,integrity of the mtDNA is crucial for the survival of organisms.It has long been held that there is no DNA repair in mitochondria.But in recent years,a number of repair factors have been found in mitochondrial extracts,suggesting the presence of DNA repair in mitochondria.This review summarized recent progress of enzyme in mitochondrial DNA repair processes.  相似文献   

6.
线粒体是一种拥有自身遗传体系的半自主细胞器,它的遗传物质线粒体DNA(mitochondrial DNA,mt DNA)随着人类的迁移、隔离、进化而形成了广泛的线粒体基因组多态性,同一祖先所具有的一些相同mt DNA SNP位点的集合称为线粒体单体型.不同的线粒体单体型会在一定程度上影响线粒体功能,从而影响整个细胞的生长,并在某些情况下导致一些个体的病变,例如Leber遗传性视神经病变、母系遗传性耳聋、Ⅱ型糖尿病、帕金森以及各种癌症等复杂疾病.本文列举总结了几种线粒体相关疾病及其与线粒体单体型如A、B、D、F、G、H、J、K、M、N、T、U、Y及一些有特点的多态位点如G11778A、A1555G、T3394C、G10398A等的相关性.  相似文献   

7.
线粒体未折叠蛋白反应(UPR~(mt))作为新发现的细胞内应激机制,直接影响老化、神经退行性疾病、癌症等疾病的发生发展.UPR~(mt)是线粒体为了维持其内部蛋白质的平衡,启动由核DNA编码的线粒体热休克蛋白和蛋白酶等基因群转录活化程序的应激反应.深入探究UPR~(mt)的作用机制对阐明老化和线粒体相关疾病的发病机理具有指导意义.本文主要阐述了线粒体未折叠蛋白反应的诱导因素、线虫和哺乳动物细胞中最新的未折叠蛋白应激反应的信号传导通路、调控因子、具体作用机制以及线粒体未折叠蛋白反应与衰老、免疫等疾病的联系,旨在为这些疾病提供新的理论基础和治疗靶点.  相似文献   

8.
线粒体DNA(mitochondrial DNA,mtDNA)与一系列蛋白质相互作用形成核蛋白复合体,并包装折叠成类似原核生物拟核的结构,称为线粒体拟核(mitochondrial nucleoid)。参与线粒体拟核组成的相关蛋白包括线粒体转录因子、线粒体单链DNA结合蛋白以及多种参与线粒体中代谢途径的多功能蛋白。线粒体拟核结构的阐明对于进一步研究线粒体形态与功能以及mtDNA的遗传模式、基因表达调控具有重要意义。本文综述了线粒体拟核结构的最新研究进展,着重介绍组成拟核结构的重要蛋白,以及这些蛋白如何将mtDNA与柠檬酸循环等线粒体重要代谢途径相联系。同时,拟核相关蛋白(nucleoid-associated protein)的异常涉及多种人类疾病,这为研究线粒体相关疾病提供了新的思路。  相似文献   

9.
线粒体拥有自身独特的核糖体--线粒体核糖体,用于翻译线粒体DNA(mitochondrial DNA, mtDNA)编码的基因。线粒体核糖体由核基因编码的线粒体核糖体蛋白质(mitochondrial ribosomal protein, MRPs)和线粒体自身编码的rRNA组装而成。MRPs表达失调会引发代谢紊乱、呼吸链受损,导致细胞发生功能障碍和异常增殖,甚至发生癌变等恶性转化。大量研究证明,MRPs在不同的肿瘤细胞中表达异常,提示着MRPs在肿瘤发生发展过程中发挥着重要作用。本文就线粒体核糖体蛋白质与人类恶性肿瘤发生的关系作一综述,为进一步阐明其在恶性肿瘤发生过程中的作用机制奠定基础。  相似文献   

10.
自从六十年代发现线粒体DNA(mtDNA)以来,mtDNA在遗传上的功能引起了广泛的重视。由于线粒体具有自已的基因组,能够自我复制,又能编码一些酶,比如生物氧化链上的一部分酶的亚基就是由线粒体基因编码的,可以推测生物的某些性状的表达可能与mt-DNA有关;另外由于实现线粒体基因组的复制与表达所需的许多酶又是由核基因编码的(如DNA聚合酶,RNA聚合酶、DNA连接酶等),可以推测  相似文献   

11.
Zheng J  Ji Y  Guan MX 《Mitochondrion》2012,12(3):406-413
Mitochondrial tRNA mutations are one of the important causes of both syndromic and non-syndromic deafness. Of those, syndromic deafness-associated tRNA mutations such as tRNA(Leu(UUR)) 3243A>G are often present in heteroplasmy, while non-syndromic deafness-associated tRNA mutations including tRNA(Ser(UCN)) 7445A>G often occur in homplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary mutations leading to hearing loss. However, other tRNA mutations such as tRNA(Thr) 15927G>A and tRNA(Ser(UCN)) 7444G>A may act in synergy with the primary mitochondrial DNA mutations, modulating the phenotypic manifestation of the primary mitochondrial DNA mutations. Theses tRNA mutations cause structural and functional alteration. A failure in tRNA metabolism caused by these tRNA mutations impaired mitochondrial translation and respiration, thereby causing mitochondrial dysfunctions responsible for deafness. These data offer valuable information for the early diagnosis, management and treatment of maternally inherited deafness.  相似文献   

12.
Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ0 cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.  相似文献   

13.
线粒体LncRNA     
长链非编码RNA(long noncoding RNAs,lncRNAs)是一类长度大于200个核苷酸的非蛋白质编码RNA。绝大多数lncRNA来源于核基因组。但近年研究发现,一些lncRNA是由线粒体基因组编码、转录而成,或定位于线粒体。本文将从线粒体lncRNA的发现与主要种类、线粒体lncRNA的加工和结构,以及它们的功能和应用等几个方面,对线粒体lncRNA进行阐述。线粒体lncRNA可能成为心血管疾病或肿瘤诊断的生物标志物,或在调控线粒体基因表达等方面发挥重要功能。  相似文献   

14.
线粒体tRNA基因突变是导致感音神经性耳聋的原因之一.有些tRNA突变可直接造成耳聋的发生,称之为原发突变.如tRNALeu(UUR) A3243G等突变与综合征型耳聋相关,而tRNASer(UCN) T7511C等突变则与非综合征型耳聋相关.此外,继发突变如tRNAThr G15927A等突变则对原发突变起协同作用,影响耳聋的表型表达.这些突变可引起tRNA二级结构改变,从而影响线粒体蛋白质合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍可导致耳聋的发生.主要讨论与耳聋相关的线粒体tRNA突变及其致聋机理.  相似文献   

15.
Aim: To conduct the clinical, genetic, and molecular characterization of 494 Han Chinese subjects with tic disorders (TD).Methods: In the present study, we performed the mutational analysis of 22 mitochondrial tRNA genes in a large cohort of 494 Han Chinese subjects with TD via Sanger sequencing. These variants were then assessed for their pathogenic potential via phylogenetic, functional, and structural analyses.Results: A total of 73 tRNA gene variants (49 known and 24 novel) on 22 tRNA genes were identified. Among these, 18 tRNA variants that were absent or present in <1% of 485 Chinese control patient samples were localized to highly conserved nucleotides, or changed the modified nucleotides, and had the potential structural to alter tRNA structure and function. These variants were thus considered to be TD-associated mutations. In total, 25 subjects carried one of these 18 putative TD-associated tRNA variants with the total prevalence of 4.96%.Limitations: The phenotypic variability and incomplete penetrance of tic disorders in pedigrees carrying these tRNA mutations suggested the involvement of modifier factors, such as nuclear encoded genes associated mitochondrion, mitochondrial haplotypes, epigenetic, and environmental factors.Conclusion: Our data provide the evidence that mitochondrial tRNA mutations are the important causes of tic disorders among Chinese population. These findings also advance current understanding regarding the clinical relevance of tRNA mutations, and will guide future studies aimed at elucidating the pathophysiology of maternal tic disorders.  相似文献   

16.
In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.  相似文献   

17.
Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.  相似文献   

18.
19.
Although mitochondrial import of nuclear DNA-encoded RNAs is widely occurring, their functions in the organelles are not always understood. Mitochondrial function(s) of tRNA(Lys)(CUU), tRK1, targeted into Saccharomyces cerevisiae mitochondria was mysterious, since mitochondrial DNA-encoded tRNA(Lys)(UUU), tRK3, was hypothesized to decode both lysine codons, AAA and AAG. Mitochondrial targeting of tRK1 depends on the precursor of mitochondrial lysyl-tRNA synthetase, pre-Msk1p. Here we show that substitution of pre-Msk1p by its Ashbya gossypii ortholog results in a strain in which tRK3 is aminoacylated, while tRK1 is not imported. At elevated temperature, drop of tRK1 import inhibits mitochondrial translation of mRNAs containing AAG codons, which coincides with the impaired 2-thiolation of tRK3 anticodon wobble nucleotide. Restoration of tRK1 import cures the translational defect, suggesting the role of tRK1 in conditional adaptation of mitochondrial protein synthesis. In contrast with the known ways of organellar translation control, this mechanism exploits the RNA import pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号