首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
土壤增温对杉木幼苗细根生理生态性质的影响   总被引:1,自引:0,他引:1  
为了揭示我国最重要人工林树种杉木对全球变暖的地下响应及其适应性,通过在福建省三明市陈大国有林场设置杉木(Cunninghamia lanceolata)幼苗土壤增温实验(增温+5℃和不增温两个处理,各5个重复),用土钻法和内生长环法探讨土壤增温约1年后的杉木幼苗细根生物量和形态特征(比根长,SRL;比表面积,SRA),化学计量学特征(C、N、P)和代谢特征(包括呼吸和非结构性碳水化合物,NSC)的变化。结果表明:1)与对照相比,土壤增温处理0—1 mm细根生物量显著下降,1—2 mm细根生物量没有变化,细根形态亦未有显著变化;2)土壤增温处理细根N浓度显著增加,细根P浓度没有显著变化,细根C/N显著降低而N/P显著增加;3)土壤增温处理细根呼吸没有出现驯化现象,细根NSC显著下降。可见,土壤增温改变了杉木细根生物量分配格局,并引起一定的营养失衡和代谢失衡现象,从而对杉木生长和生产力产生影响。  相似文献   

2.
模拟氮沉降对杉木幼苗细根化学计量学特征的影响   总被引:1,自引:0,他引:1  
为了揭示全球氮(N)沉降对杉木人工林细根碳(C)、N、磷(P)元素组成的影响,在福建三明陈大国有林场开展杉木(Cunninghamia lanceolata)幼苗模拟N沉降试验,设置了对照(CK)、低N(LN,40 kg N hm~(-2)a~(-1))、高N(HN,80 kg N hm~(-2)a~(-1))3个处理,每个处理5个重复。采用内生长环法通过2年4次取样探讨N沉降对细根C、N、P化学计量学的影响。结果显示:(1) N添加在2015年降低细根C浓度,此后低N处理无影响,高N添加在2016年增加了细根C浓度;高N添加提高了细根(特别是0—1 mm细根) N浓度,但低N添加则无显著影响,甚至在2016年7月显著降低细根N浓度; N添加在2015年对细根P浓度无显著影响,但在2016年导致细根(特别是0—1 mm细根) P浓度降低。(2)低N添加在2016年显著提高细根的C∶N比,而高N添加则在2015年1月显著降低细根的C∶N比;低N添加对细根N∶P比没有显著影响,而高N添加则在大部分取样时间里显著增加了细根N∶P比。(3)不同处理细根C浓度、C∶N比均随着时间的增加呈增加趋势,而细根N浓度和N∶P比呈降低趋势。本研究表明,N添加对杉木细根化学计量学特征的影响因不同N添加水平而异,并受苗木生长的稀释效应所调节。  相似文献   

3.
在福建三明陈大国有采育场杉木幼苗小区,采用土钻法和内生长环法,以非隔离降水为对照,对隔离降水50%处理一年的杉木幼苗细根生物量和形态、化学计量学、比根呼吸、非结构性碳水化合物等功能特征进行研究.结果表明: 与对照相比,隔离降水处理0~1 mm细根生物量显著降低,1~2 mm细根生物量差异不显著;隔离降水导致细根在形态上发生了适应性变化,0~1 mm和1~2 mm细根比根长分别增加21.1%和30.5%,0~1 mm细根组织密度显著降低,而比表面积显著增加.隔离降水导致细根氮的富集,但限制了对磷的吸收,氮磷比升高,导致营养失衡;隔离降水没有显著改变细根比根呼吸和非结构性碳水化合物含量,但导致1~2 mm细根可溶性糖、糖淀比显著降低,淀粉含量增加33.3%,表明其通过增加非结构性碳水化合物贮存比例以应对降水减少.  相似文献   

4.
赵喆  金则新 《植物研究》2020,40(1):41-49
以一年生夏蜡梅(Sinocalycanthus chinensis)幼苗为研究对象,设置4种氮水平:对照(CK,0 gN·m-2·a-1)、低氮(N1,2 gN·m-2·a-1)、中氮(N2,8 gN·m-2·a-1)、高氮(N3,32 gN·m-2·a-1),处理1年后,测定不同氮沉降水平下夏蜡梅幼苗生长指标、生物量分配以及非结构性碳水化合物的差异,探讨夏蜡梅幼苗对氮沉降的响应机制。结果表明:随着氮浓度的增大,夏蜡梅幼苗的株高、基径呈现先升高后降低的趋势,它们均以中氮处理最高。随着氮浓度的升高,夏蜡梅幼苗的叶、冠层生物量呈现出逐渐升高的趋势,而茎、根、总生物量、根生物量比和根冠比则表现出先升高后降低的趋势。叶生物量比随着氮浓度的升高呈现先降低后升高的趋势。叶平均周长、叶平均长度、叶平均面积均以中氮处理最大;叶宽长比以高氮处理最高;中氮、高氮处理的比叶面积明显低于对照。叶中的淀粉、非结构性碳水化合物(NSC)含量均以中氮处理最高;茎中的淀粉、NSC含量以高氮处理最低。总之,不同浓度氮沉降均促进了夏蜡梅的生长,中氮处理促进作用最明显,对其他生长和生理指标也产生了一定的影响。  相似文献   

5.
在福建省三明市陈大国有林场开展杉木幼苗土壤增温试验,采用内生长环法研究土壤增温(+5℃)对杉木幼苗细根比呼吸速率和非结构性碳的影响,分析杉木人工林对全球变暖的地下响应及其适应性.结果表明:增温第二年,土壤增温引起细根组织内非结构性碳水化合物(NSC)的较大变化,1月增温处理0~1 mm细根NSC和淀粉浓度下降,1~2 mm细根可溶性糖和NSC浓度下降;7月增温处理0~1 mm细根NSC、可溶性糖和淀粉浓度提高,使1~2mm细根淀粉浓度增加.增温第3年,土壤增温对细根NSC无显著影响.增温处理使0~1 mm细根比根呼吸速率在增温第二年7月增加,而在第三年7月下降;与0~1 mm细根相比,增温处理对1~2 mm细根比呼吸速率没有显著影响.细根呼吸对增温的响应与增温持续时间有关,随增温时间的延长,细根呼吸产生部分驯化,同时能够使细根NSC浓度保持稳定.  相似文献   

6.
华西雨屏区苦竹细根分解对模拟氮沉降的响应   总被引:1,自引:0,他引:1  
森林细根分解是陆地生态系统碳循环的重要过程之一,其分解速率受到大气氮沉降增加的潜在影响.2007年11月至2013年1月,对华西雨屏区苦竹人工林进行每月1次的模拟氮沉降试验,设对照(CK,0 g N·m-2·a-1)、低氮(5 g N·m-2·a-1)、中氮(15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1)4个处理.2011年1月起,采用分解袋法研究苦竹细根分解.结果表明:苦竹细根分解呈现出先快后慢的趋势,在分解第1年质量损失达60%,分解第2年质量残留率变化较为平缓.对照处理细根质量损失50%和95%分别需要1.20和5.17 a.总体上,负指数模型低估了各处理细根分解速率.模拟氮沉降显著抑制了苦竹细根分解,相对于对照,高氮处理细根在分解2 a后残留量增加51.0%.模拟氮沉降显著增加了凋落物碳、氮和磷元素的残留率.与对照相比,模拟氮沉降处理4.5 a后,中氮和高氮处理土壤pH值显著降低,高氮处理土壤有机碳、总氮、铵态氮和硝态氮含量以及苦竹细根生物量显著增加.  相似文献   

7.
杉木幼苗和伴生植物细根对土壤增温的生理生态响应   总被引:2,自引:0,他引:2  
为揭示全球变暖背景下杉木人工林幼苗与其伴生的其它植物间的对土壤养分的竞争关系和适应性,本研究采用埋设加热电缆进行土壤增温(+5℃)技术,在福建省三明市陈大国有采育场内建立杉木(Cunninghamia lanceolata)幼苗试验小区,包括对照(NW)与增温(WNW)处理(均不除草)。采用内生长环法与土钻法相结合,测定增温对杉木幼苗及伴生的其他植物(主要为山油麻Helicteres angustifolia、东南野桐Mallotus lianus)等细根生物量、呼吸、形态、及根组织氮浓度的短期影响。结果表明,(1)增温显著降低了杉木1mm细根生物量,而显著增加了其他植物1mm细根生物量。增温显著提高了其他植物1mm细根的氮浓度,显著降低了其比根长(SRL)和比表面积(SRA);同时降低了比根呼吸(参比温度18℃,SRR_(18)),表明细根呼吸对增温产生了驯化现象。而增温对杉木细根的氮浓度没有显著影响,却显著提高了1mm细根比表面积;同时增温对杉木SRR_(18)没有显著影响,表明杉木细根呼吸没有产生驯化现象。(2)SRR_(18)与比根长间的关系受到增温的显著影响,但树种以及增温×树种的交互作用没有显著影响,表明杉木和其他植物细根竞争能力与维持成本间的平衡关系均受到增温的共同影响。综上结果显示,相较于杉木,伴生的其他植物在增温环境中对地下资源的竞争具有更强的优势,能通过增加细根生物量迅速抢夺吸收因增温而加速矿化的土壤养分,同时通过生理和形态的调整,减少根系单位质量的维持成本,从而提高其对全球变暖的适应性;而杉木在增温条件下面临其他植物的强烈竞争,细根生物量降低,处于不利地位,为了满足生长所需,需增大比根长和比根表面积,且因细根呼吸没有产生驯化现象,从而增加了细根单位质量的维持成本,说明杉木对全球变暖的适应性低于其他植物。该研究结果对于全球变暖下杉木人工林的管理具有重要意义。  相似文献   

8.
根系作为植物与土壤物质交换和养分循环的桥梁,长期以来一直是生态学研究的热点。于2017年7月植物生长季,对长白山模拟11年氮(N)沉降控制试验样地的白桦(Betula platyphylla)山杨(Populus davidiana)天然次生林进行了根系采样,并利用根序法研究了根系形态特征和解剖结构对不同梯度N添加处理的响应,旨在探求两物种根系之间潜在生态联系。本试验共设置了三个N添加梯度,分别为对照(CK,0 g N m~(-2 )a~(-1))、低N处理(T_L,2.5 g N m~(-2 )a~(-1))和高N处理(T_H,5.0 g N m~(-2 )a~(-1))。研究结果如下:1)T_L显著抑制白桦和山杨前三级细根皮层厚度的生长。白桦通过增加皮层细胞直径(一级根增加了72.77%,二级根增加了53.22%,三级根增加了39.96%)但减少皮层层数来降低皮层厚度,而山杨主要通过皮层细胞直径的减少(一级根下降了40.80%,二级根下降了28.17%)来降低其皮层厚度。2)T_H显著抑制山杨前三级细根生长。主要通过增加皮层厚度(一级根增加了68.78%,二级根增加了50.81%,三级根增加了88.53%)以及降低导管横截面积来抑制吸收养分,从而达到影响生长的目的。3)白桦T_H相比于T_L细根直径呈抑制生长状态。其主要通过抑制中柱直径(一级根下降了17.61%,二级根下降了16.89%,三级根下降了20.62%)的生长来实现。以上结果表明,在同一立地条件下,白桦和山杨的细根对不同浓度N沉降的响应方式不同。  相似文献   

9.
全球气候变暖与氮沉降是两个同时存在的全球变化主要因素,但目前关于二者的研究多以单因子为主。细根碳(C)、氮(N)、磷(P)浓度影响着森林生态系统生产力与碳汇,然而目前关于气候变暖与N沉降对细根化学组成元素的影响尚不清楚。本研究在福建三明森林生态系统与全球变化研究站陈大观测点开展增温(W,+4℃)与N添加(N,+40 kg N·hm-2·a-1)双因子试验,探讨增温与N添加对杉木细根C、N、P化学计量学的影响。结果表明:(1)增温提高了春季细根N浓度,对细根C与P浓度则无显著影响;增温降低了春季细根C∶N,对细根N∶P无显著影响。(2) N添加提高了细根C浓度与春季细根N浓度,对细根P浓度则无显著影响; N添加降低了春季细根C∶N,提高了春季细根N∶P。(3)增温与N添加的交互作用对春季1~2 mm径级细根C浓度有显著影响,但对0~1 mm径级细根C浓度无显著影响,并且增温与N添加的交互作用对细根N与P浓度均无显著影响。本研究表明,增温与N添加会促进亚热带森林生态系统养分循环,N添加并未改变亚热带杉木人工林N限制现状;增温与N添加的交互作用对细根C、N、P元素的影响并不一致,受苗木C投资...  相似文献   

10.
模拟氮沉降对天山云杉细根分解及其养分释放的影响   总被引:1,自引:0,他引:1  
采用野外模拟试验,设计4种氮处理——对照(不施氮,CK)、低氮(施氮5kg·hm-2·a-1,LN)、中氮(施氮10kg·hm-2·a-1,MN)、高氮(施氮15kg·hm-2·a-1,HN),研究氮沉降对天山云杉细根分解及养分释放的影响。结果表明:(1)不同氮处理分解2年后天山云杉细根残留率依次为74.044%(HN)、71.967%(MN)、68.156%(CK)、61.933%(LN),且差异显著。(2)天山云杉的细根月分解速率在试验前期不同氮处理下规律不明显;而在试验后期呈现为对照中氮低氮高氮。(3)4种氮处理下天山云杉细根分解50%需要的时间依次为3.31年(LN)、3.67年(CK)、4.28年(MN)、4.64年(HN),分解95%需要的时间依次为14.39年(LN)、15.93年(CK)、18.58年(MN)和20.17年(HN)。(4)天山云杉细根C元素迁移模式总体表现为直接释放,N元氮为富集-释放模式,残留率呈现波动式下降趋势。(5)不同氮处理下天山云杉细根分解率与C元素浓度间均呈线性负相关关系;对照和低氮处理下,天山云杉细根分解率与N元素浓度间均为线性负相关关系,中氮和高氮处理下,细根分解率随N元素浓度的增加呈先增加后降低的趋势。  相似文献   

11.
土壤增温对杉木幼苗细根生长量及形态特征的影响   总被引:1,自引:0,他引:1  
为了揭示杉木人工林对全球变暖的地下响应,在福建省三明市陈大国有林场开展杉木(Cunninghamia lanceolata)幼苗土壤增温试验,采用内生长环法探讨增温实验开始后第2年(2015年1月、7月取样)和第3年(2016年1月、7月取样)杉木幼苗细根生长量和形态特征(比根长,SRL;比表面积,SRA;组织密度,RTD)的变化。结果表明:(1)随着苗木的生长,土壤增温对细根生长量的影响趋势是先抑制,再无显著影响,最后促进。(2)土壤增温对细根形态特征的影响在不同取样时间有差异:土壤增温对7月份(夏季)取样的细根SRL或SRA有显著促进作用,对1月份(冬季)取样的细根SRL、SRA均无显著影响。(3)土壤增温对第二、第三次取样的1—2 mm细根RTD有促进作用。表明土壤增温对杉木幼苗细根生长量的影响与苗木生长阶段有关;同时苗木可通过细根形态的调整(增大SRL和RTD)以适应土壤增温引起的土壤资源变化和环境胁迫,维持自身的生长。  相似文献   

12.
为了揭示我国最重要的人工林树种杉木对全球变暖和降水格局改变的地下响应及其适应性,在福建省三明市陈大国有林场开展杉木(Cunninghamia lanceolata)幼苗土壤增温和隔离降水双因子试验,包括对照(CK)、土壤增温5℃(W)、隔离降水50%(P)和土壤增温+隔离降水(WP)4个处理,用微根管法探讨试验1a期间土壤增温、隔离降水及其交互作用对杉木幼苗细根生产量(以细根出生数量表征)的影响。双因素方差分析发现,土壤增温和隔离降水对细根总出生数量没有影响,但两者的交互作用则极显著。与CK相比,W细根总出生数量显著增加,而WP处理细根总出生数量则显著低于W处理和P处理。土壤增温、隔离降水与季节的重复测量方差分析发现,土壤增温×季节、隔离降水×季节对细根出生数量均有显著影响;与CK相比,W处理春季细根出生数量显著增加,P处理秋季细根出生数量显著增加,而WP处理夏季和冬季细根出生数量显著下降。土壤增温、隔离降水与径级的三因素方差分析表明,土壤增温×隔离降水×径级存在显著影响;0—1 mm径级细根出生数量W处理显著高于CK,但WP处理则显著低于W处理和P处理。土壤增温、隔离降水与土层的3因素方差分析表明,土壤增温、隔离降水与土层之间不存在显著的交互作用;仅在20—40 cm土层发现P处理细根出生数量显著高于CK。研究结果表明,土壤增温和隔离降水对杉木幼苗细根生产的影响存在显著的交互作用,这种交互作用还因不同的季节和径级而异。  相似文献   

13.
为研究氮沉降对植物养分平衡的影响,对1a生杉木(Cunninghamia lanceolata(Lamb.)Hook.)幼苗进行了室内模拟试验。以NH4NO3作为外加氮源,设计了N0(0 g N m-2?a-1)、N1(6 g N m-2?a-1)、N2(12 g N m-2?a-1)、N3(24 g N m-2?a-1)和N4(48g N m-2?a-1)等5种氮沉降水平,每处理重复6次。通过1a的试验发现,杉木幼苗叶、茎、粗根和细根中的N、K、Mg含量随氮处理水平的增加而上升,但Ca在各器官中的含量则呈下降趋势;中低氮(N1,N2)对叶、茎和粗根中P的含量表现为促进作用,而高氮(N3,N4)则表现为抑制作用。幼苗各器官中的N与其他养分元素的比值随氮处理水平的增加而普遍升高,但粗根中的N/K、N/Mg则表现为下降。与对照(N0)相比,在N1、N2、N3、N4处理中,幼苗对外加氮素的表观利用率分别为60.7%、57.9%、43.3%和27.9%,随氮处理水平增加,利用率呈明显下降趋势。随着氮处理水平的增加,幼苗体内的氮分配到叶和细根中的比例增加,而分配到茎和粗根中的比例下降。因此,氮沉降明显增加了杉木幼苗各器官的氮含量,影响了幼苗的养分平衡。  相似文献   

14.
为了揭示不同季节下杉木人工林不同形态氮吸收速率对全球变暖与氮沉降的地下响应,在福建三明森林生态系统与全球变化研究站陈大观测点开展增温和氮添加双因子试验,包括对照、增温、施氮、增温+施氮4个处理。结果表明:(1)在三个季节中,4个处理的杉木细根对不同浓度下硝态氮的吸收速率基本呈现出春季较高,夏秋季较低的态势,而对不同浓度下铵态氮的吸收速率则相反,为夏秋季较高,春季较低。(2)不同季节四个处理的离体根对不同浓度下铵态氮的吸收均遵循米氏-曼氏动力学方程,而对硝态氮的吸收并不完全遵循米氏方程,表现为双相动力学。(3)春季,与无氮添加相比,氮添加提高了NH+4的最大吸收速率(Vmax-NH+4)。夏季,与无增温相比,增温提高了Vmax-NH+4。秋季,与无增温相比,增温降低了NH+4的半饱和常数(Km-NH+4);...  相似文献   

15.
植物根系是全球陆地生态系统碳储量的重要组成部分,在全球生态系统碳循环中起着重要作用,日益加剧的氮沉降会影响根系生物量在空间和不同径级的分配,进而影响森林生态系统的生产力和土壤养分循环。以杉木幼树为研究对象,通过野外氮沉降模拟实验,研究氮沉降四年后对不同土层、不同径级根系生物量的影响。结果发现:(1)低氮和高氮处理总细根生物量较对照均无显著差异(P > 0.05),高氮处理粗根生物量及总根系生物量较对照分别增加45%和40%(P < 0.05);(2)与对照相比,施氮处理显著增加20-40 cm与40-60 cm土层细根和粗根生物量,且在低氮处理下,20-40 cm土层细根、粗根在总土层细根与粗根生物量的占比显著提高。(3)与对照相比,高氮处理显著增加了2-5 mm、5-10 mm及10-20 mm径级的根系生物量,低氮处理显著增加2-5 mm、5-10 mm径级根系生物量,且显著降低20-50 mm径级根系生物量。综上所述表明:氮沉降后杉木幼树通过增加较粗径级根系来增加对养分及水分的输送,同时通过增加深层根系生物量及其比例的策略来维持杉木幼树的快速生长;而根系生物量的增加,在一定程度上会增加根系碳源的输入,影响土壤碳循环过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号