首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
新疆西伯利亚落叶松固碳速率时空分异研究   总被引:1,自引:1,他引:0  
邱琳  郑江华  王蕾  轩俊伟  高亚琪  罗磊 《生态学报》2018,38(19):6953-6963
气候变化对高海拔物种的生长影响较为显著,高海拔物种的时空分布直接影响区域生态平衡。基于新疆森林资源连续清查数据,使用一元生物量模型估测新疆天山及阿尔泰山西伯利亚落叶松生物量,计算其固碳速率,利用全局莫兰指数(Moran's I)和热点分析(Getis-Ord Gi~*)研究新疆西伯利亚落叶松固碳速率空间聚集特征,并分析其近年来在空间上的变化趋势,再结合气象数据运用相关和偏相关分析,分析其空间分异的影响因素。结果表明:(1)天山东部西伯利亚落叶松固碳速率高于阿尔泰山西伯利亚落叶松固碳速率,2001—2016年期间,新疆西伯利亚落叶松固碳速率整体呈增长趋势,阿尔泰山西伯利亚落叶松固碳速率由0.43 t hm~(-2)a~(-1)增长至0.76 t hm~(-2)a~(-1),天山东部西伯利亚落叶松固碳速率由0.89 t hm~(-2)a~(-1)增长至1.06 t hm~(-2)a~(-1)。(2)天山东部西伯利亚落叶松固碳速率呈离散分布但不显著(P0.05),阿尔泰山西伯利亚落叶松固碳速率空间聚集特征趋于显著,其高固碳速率逐渐从东南部的青河县向西北部的阿尔泰市和哈巴河县移动,而低固碳速率从阿尔泰山的西北部的阿勒泰市向东南部的青河县移动。(3)通过偏相关分析得出,2001—2016年时期新疆西伯利亚落叶松固碳速率与温度成极显著正相关(P0.01),2001—2006年和2006—2011年时期与降水成正相关,但不显著,至2011—2016年时期转变为与降水成极显著正相关(P0.01),2001—2016年期间,其与纬度梯度成极显著负相关(P0.01)转变成无显著相关性,与海拔梯度无显著相关。新疆西伯利亚落叶松固碳速率与纬度梯度呈显著负相关的空间分布格局已发生显著变化,其空间分布格局由东南部高西北部低,逐渐变成西北部高东南部低。  相似文献   

2.
不同林龄长白落叶松人工林碳储量   总被引:13,自引:3,他引:10  
马炜  孙玉军  郭孝玉  巨文珍  穆景森 《生态学报》2010,30(17):4659-4667
基于7—41 a长白落叶松人工林样地生物量调查,探讨了不同发育阶段长白落叶松人工林碳储量的时空变化规律。结果表明:随林龄的增大,长白落叶松人工林林木和各器官生物量增加,树干所占比例增加,生物量转换因子(BEF)、根茎比(R)等参数分布正常。林下植被层、倒落木质物层生物量随林龄增大呈增加趋势。群落总碳储量的空间分布序列是:乔木层倒落木质物层林下植被层。未成林期、幼龄林、中龄林、近熟林和成熟林群落的碳储分别为6.585、66.934、90.019、125.103、162.683t.hm-2,乔木层碳储量分别为3.254、58.521、78.086、108.02、138.096 t.hm-2,倒落木质物层和林下植被层碳储量平均值分别为10.859、1.988 t.hm-2。乔木层、倒落木质物层和林下植被层碳储量占总量的平均比率分别为85.99%、2.17%和11.85%。在不同发育阶段群落和乔木层碳储量的年生产力呈先降后升的变化趋势,中龄林的碳储量累积速率高于幼龄林及成熟林,碳素年固定量分别为0.940、3.889、3.615、3.628、3.968 t.hm-2,乔木层年生产力分别为0.465、3.39、3.137、3.133、3.368 t.hm-2。林下植被层年生产力呈"U"形变化,平均值为0.079 t.hm-2。倒落木质物层的年生产力呈线性增长,平均值为0.423 t.hm-2。研究认为长白落叶松人工林群落碳储量随林龄增加的变化规律明显,碳汇潜力巨大。  相似文献   

3.
基于8~56 a长白落叶松人工林样地生物量调查数据,建立了长白落叶松林各器官生物量模型,探讨了不同林龄长白落叶松人工林干材、树皮、树枝、树叶、树根的生物量分布与变化规律及单木与林分乔木层的固碳能力。结果表明:随着林龄的增大,长白落叶松人工林林木及各器官生物量均呈现不同程度的增加趋势,单株木生物量由8 a时的0.174 kg增加至56 a时的328.196 kg,林分乔木层生物量由8 a时的0.519 t·hm-2增加至56 a时的251.39 t·hm-2,其中树干所占比例最大,且增幅最大。长白落叶松人工林单木平均碳储量为74.822 kg,56 a林分乔木层碳密度为130.455 t·hm-2,平均碳密度达63.113 t·hm-2,各器官碳储量变化规律明显。长白落叶松人工林幼龄林、中龄林、近熟林、成熟林林分乔木层的年平均固碳量分别为0.087、1.193、1.703、2.124 t·hm-2,固碳量年平均增长率排序为中龄林幼龄林成熟林近熟林。研究认为,长白落叶松人工林单株木及林分各器官生物量随林龄增加具有明显的变化规律,成熟林分固碳水平最高,中龄林分后期固碳潜力最大。  相似文献   

4.
利用年轮生态学方法和生物量经验方程,在宁夏六盘山研究了华山松天然林及华北落叶松和油松人工林等3种针叶林的年初级净生产力(NPP)及其与气象因子间的关系。研究表明:3种针叶林生物量的年际变化均符合逻辑斯蒂方程,林分的现存生物量(t/hm2)为华北落叶松林最大(141.96),华山松林(130.99)次之,油松林最小(123.29)。3种针叶林NPP存在显著的年际差异和种间差异,林分的NPP(t.hm-.2a-1)为华北落叶松林(6.72)>油松林(5.76)>华山松林(2.66);NPP年际变化在华山松林呈现"快速增加-缓慢增加-缓慢减小"的趋势,而华北落叶松林和油松林为快速上升的趋势。3种针叶林的NPP随年降水量的变化行为不同,华山松林极轻微地增大,华北落叶松林和油松林均是先增加后降低;然而在极端干旱年份或极端湿润年份,3种针叶林的NPP都趋向于相同的较低值,其原因可能分别是水分胁迫和低温胁迫。气象因子对林分NPP的影响具明显的"滞后效应"和种间差异。华山松林NPP与上年11月和当年9、11月的降水量显著负相关;油松林NPP与上年9月及当年4月的降水量显著相关;上年和当年9月的降水量均与华北落叶松林NPP显著正相关。上年6月的温度和当年3与6月的月均温及月均最高温能显著影响3种针叶林的NPP,但存在种间差异,其中华山松林NPP与当年与上年生长季各月的温度均呈不同程度的负相关,而油松林和华北落叶松林则多呈不同程度的正相关。  相似文献   

5.
陈东升  孙晓梅  张守攻 《生态学杂志》2016,27(12):3759-3768
以7、17、30和40年生4个发育阶段(幼龄、中龄、近熟和成熟阶段)的日本落叶松人工林为对象,研究了林龄对生物量、碳储量和养分特征的影响.结果表明: 在单木水平上,不同发育阶段干、枝、皮、叶、根生物量和养分浓度差异显著.随年龄增加,各器官生物量呈增大趋势,N、P、K浓度呈下降趋势,Mg浓度先降后升,Ca浓度持续升高.优势木、平均木和劣势木的各器官生物量之间差异显著,但养分浓度差异不显著,表明竞争对各器官养分浓度影响不大.在林分水平上,总生物量、碳储量和养分储量随林龄增加呈增大趋势,与幼龄林相比,成熟林分别增加217.9%、218.4%和56.4%,表明日本落叶松林生长后期能以较少的养分生产较多的干物质,养分利用效率较高.5种元素的积累量除P和K在近熟林(30年生)略有降低外,其他元素都随林龄增加而增加.N集中在叶中,Ca集中在树干,K和Mg主要集中在根,P在不同器官中的分配较均匀.日本落叶松林分年均生物量积累率、固碳率和养分积累率均随林龄的增加而降低,从幼龄林每年7.16 t·hm-2、3.40 t·hm-2、104.64 kg·hm-2降低到成熟林的3.99 t·hm-2、1.89 t·hm-2、28.64 kg·hm-2,表明日本落叶松林幼、中龄阶段固碳潜力大,但养分消耗也高.  相似文献   

6.
为评估吉林省落叶松林的生产力现状并为我国森林生态系统生产力和植被监测研究提供基础数据,以吉林省落叶松林为研究对象,基于吉林省及其周边100 km范围内41个气象站点资料,采用LPJ-DGVM模型模拟了2000—2019年吉林省落叶松林近20年的净初级生产力,并采用线性回归趋势分析、变异系数、Hurst指数和相关性分析法对其时空变化、稳定性及其与气候因子的相关关系进行了分析。结果表明:(1)2000—2019年吉林省落叶松林年均净初级生产力(NPP)为592 g C m-2 a-1,年均增长率为2.81%,随时间推移呈现波动增长的趋势(β=14.55,R~2=0.784,P<0.01)。(2)NPP变异系数为0.07—2.33,均值为0.48,除幼龄林外,整体波动较小。Hurst指数介于0.441—0.849之间,均值为0.612,未来吉林省落叶松林NPP呈增加趋势。(3)吉林省落叶松林NPP存在明显的空间异质性,北部和南部区域NPP较高,是近20年NPP增长较快的区域。(4)2000—2019年吉林省落叶松林年均NPP与年总降水、生长季...  相似文献   

7.
以六盘山自然保护区华北落叶松林地土壤(海拔范围为1800-2700 m)为研究对象,选取1900、2100、2300、2500 m 4个海拔梯度,研究华北落叶松林土壤有机碳含量、有机碳密度沿海拔梯度的分布规律及其影响因素,以期为准确估算华北落叶松林土壤有机碳储量及其固碳效益评价提供科学依据。结果表明:(1)六盘山不同海拔梯度华北落叶松林土壤粒径范围主要集中在粗粉粒、细粉粒和极细砂粒,粘粒含量最少,不足1%。林地土壤呈中性或弱碱性,pH均值范围为6.74-8.19;除土壤pH外,其他土壤理化指标沿海拔梯度的分布差异不显著(P>0.05)。(2)在1 m的标准土壤剖面内,土壤有机碳含量变化范围为15.80-35.45 g/kg,总有机碳密度的分布在21.34-42.28 kg/m2,且深层(40-100 cm)土壤有机碳含量及其密度在各海拔梯度内的变异程度大于表层土壤。(3)随着海拔的升高,土壤有机碳含量及其密度的表聚现象逐渐不明显;同一海拔高度,土壤有机碳含量和碳密度均随土层深度的增加而逐渐降低;同一土层深度土壤有机碳含量及其密度均随海拔的升高呈先增加后减少的趋势,而在整个土壤剖面上,土壤有机碳含量及其密度在较低海拔区域(小于2100 m)的变异程度较大。(4)冗余分析(RDA)表明:土壤理化性质可以解释华北落叶松林土壤有机碳含量及其密度81.02%的变异,其中电导率是影响华北落叶松土壤有机碳沿海拔梯度变异的主导因子,占环境因子总解释量的67.4%。  相似文献   

8.
利用林芝地区第六次二类森林资源清查数据,运用材积源生物量法和平均生物量法,结合不同树种的分子式含碳率,估算了林芝地区森林及其组分的碳储量、碳密度,并分析其分布特征.结果表明:2004年,林芝地区森林碳储量为2.43×1O8 t,森林平均碳密度为76.01 t·hm-2,其中,林分碳储量>灌木林碳储量>疏林碳储量>散生木碳储量>竹林碳储量>四旁树碳储量,各林分类型碳储量在2.51×105~1.27×108 t,共计占总森林碳储量的92.0%,各林分类型的平均碳密度为103.16 t·hm-2,其中冷杉林的碳储量和碳密度均最高.在区域分布上,森林碳储量由西北向东南递增,森林平均碳密度由西南向东北递增.林分碳储量以成、过熟林碳储量为主,而过熟林的碳密度在各龄级中最高.随着过熟林的增加,林芝地区森林碳储量将增加;但随着过熟林的死亡和分解,林芝地区森林碳储量将有减小趋势.  相似文献   

9.
有关生物量碳随林分生长变化研究较多,而相关土壤有机碳储量随林分生长变化研究较少且结论争议较大。通过对二者随林分生长变化差异的比较,旨在探讨是否可以通过简单林分生长指标来判断土壤有机碳的变化规律。对兴安落叶松人工林分布区内139个样地的生物量与土壤碳动态研究结果表明:(1)林龄是指示生物量碳累积的可靠参数。兴安落叶松个体大小(胸径、树高和单株生物量)随着林龄的增大不断增加,相关性显著(P<0.001),而林分生物量密度随林龄的增大呈线性上升(R2=0.2-0.6,P<0.001)。(2)地表凋落物量与林龄表现显著的二次曲线相关,前37a上升而后开始下降。地表凋落物量与林木大小、生物量密度均相关显著(R2=0.14-0.82,P<0.001),但与树高相关性最高,显示树高变化对于评价地表枯落物生物量可能更有效。(3)林龄、林木大小和林分生物量密度均与土壤不同层碳存在相类似的相关关系。深层土壤有机碳(>40cm)与林龄显著负相关(P<0.05),表层土壤有机碳有增加趋势 (P>0.05),这使得0-40 cm与40-80 cm土壤有机碳储量比值随林龄增加而显著增加(P<0.01);与此类似,林木平均大小也与深层土壤有机碳显著负相关(P<0.05),而表层与深层有机碳储量比值随林木大小(胸径与树高)的增大也呈显著上升趋势(P<0.05);但同时考虑林木个体大小和林分密度的林分生物量密度(地上和地下),并没有发现明显的显著相关关系。这些结果说明,评价土壤有机碳变化的指标中,林龄、树高和胸径可能更优于较为复杂的生物量密度等指标。考虑到深层土壤较表层具有更长期的稳定性,这种表层与深层土壤有机碳比值的增加,意味着土壤碳有向表层积聚而深层减少的趋势,这可能使得土壤有机碳更容易受外界环境变化(如火灾等)的影响。落叶松人工林群落碳储量随林龄增加的变化规律明显,除了占主要部分的生物量碳之外,土壤碳累积值得关注,这一发现对于以固碳增汇为目标的碳汇林建设具有指导意义。  相似文献   

10.
全球固碳释碳问题一直是近年来关乎民生的热点话题,区域碳源/碳汇对生态环境的重要性不言而喻。基于CASA模型估算黄土高原1990—2015年植被净初级生产力的年际变化,并分析土地利用变化、海拔高度及两者协同作用对其综合影响,结果表明:(1)黄土高原1990—2015年植被NPP与植被固碳总体呈增加趋势,年均NPP增速2.74 gC m-2 a-1,年均固碳增速1.13 TgC/a,研究区林地年均NPP(619.5 gC m-2 a-1)远超其他用地类型,固碳效果理想;(2)黄土高原年均NPP随高程的增加先降低后升高,年总NPP和固碳量随高程增加变化趋势相反;(3)研究区土地利用转变类型中退耕还林的植被固碳效果最好;而林地变为耕地或草地均不能达到固碳目的,此外,更推荐在研究区海拔低于1500 m变草为耕,海拔高于1500 m退耕还草,海拔高于3000 m变耕、草为林。以期为区域尺度的生态环境建设提供一定的参考和科学依据。  相似文献   

11.
为了解秦岭北坡太白红杉(Larix chinensis)的碳源/汇动态,运用BIOME-BGC模型模拟了1959-2016年太白红杉生产力、碳储量和碳利用效率(CUE),并利用气候情景设定方法预测碳源/汇功能的未来趋势。结果表明,58年间太白红杉的平均净初级生产力(NPP)、初级生产力(GPP)和净生态系统生产力(NEP)分别为328.59、501.56和31.42 g C m–2a–1,平均碳储量为35.38 kg C m–2a–1,平均CUE为0.65;除1960-1961、1969-1970、1997-1999年为"碳源"年外,绝大多数年份为"碳汇"年,年内呈现"碳源-碳汇-碳源"的变化特征,碳储量总体增加,潜在固碳能力较为稳定。GPP、NPP、碳储量的正向作用排序为气温上升CO_2浓度增加,NEP的正向作用排序反之,降水增加对生产力和碳储量增加起反作用,气温升高对CUE起反作用;气温和CO_2浓度是北坡太白红杉生长的限制因子,气温的限制性强于CO_2浓度,未来气温或CO_2浓度升高有利于碳汇功能发挥,降水增加减弱碳汇效果。RCP4.5、RCP8.5情景下太白红杉生产力和碳储量在21世纪呈上升趋势,RCP8.5上升幅度略大于RCP4.5,潜在固碳能力仍较强;1-3月和10-12月为"碳源"月,5-9月为"碳汇"月。这揭示了气候变化背景下气温、降水和CO_2浓度对太白红杉碳源/汇的影响方式,气温和CO_2浓度上升是碳汇的促进因素,降水增加为阻碍因素。  相似文献   

12.
城市土地利用显著改变了原有生态系统的结构和功能,特别是建成区植被的碳吸收和碳储存能力。该研究通过实地调查和测量,估算城市建成区内乔木、灌木、草坪的生物量和净初级生产力(net primary productivity,NPP),该方法考虑了园林管理(如修剪或割草)对建成区碳吸收和碳储存的影响。结果表明,台州城市树木个体生物量年增量是野外森林中同类树木的近2倍;乔木修剪量占乔木NPP的1/3。目前台州市建成区的植被碳吸收能力为2.1×103kgC.hm–2.a–1(其中乔木的贡献为64%,灌木为9%,草坪为27%),低于本地野外森林同面积的碳吸收能力;通过与野外常绿阔叶林比较发现,增加台州建成区的绿化覆盖率(从23%提高到46%)即可补偿因城市扩张引起的植被碳吸收能力的损失。  相似文献   

13.
森林在陆地生态系统吸收碳素方面起着主要作用,了解其固碳特征对研究地区之间的碳循环至关重要。油松人工林是黄土高原地区一种典型的退耕还林树种,研究其固碳特征有利于综合分析评价油松人工林的生态效益。为了研究黄土高原西部地区油松人工林碳储量及碳密度空间分布特征因降水量不同引起的差异,以黄土高原西部地区3个典型栽培区域的近成熟油松人工林为对象,研究了群落内各组成部分的生物量和碳库特征。乔木层生物量的估算采用以胸径和树高为基础变量的生物量方程,灌木、草本、凋落物采用样方收获法,土壤碳库依据土壤剖面(1 m)和土钻取样相结合的方法测算。结果表明:在兰州官蘑滩地区(372 mm)、太子山(519 mm)和小陇山(632 mm)3个不同降水量区域,油松人工林生物量碳密度分别为(49.08±2.86)t/hm~2、(73.90±9.36)t/hm~2和(82.55±7.36)t/hm~2。小陇山地区的生态系统总碳密度和生物量碳密度与兰州地区存在显著性差异。在3个不同降水量区域,土壤有机碳密度仅在表层土壤(0—10 cm)差异达到显著水平(P0.05),而土壤总碳密度间差异未达到显著水平(P0.05)。黄土高原半干旱区近成熟油松人工林的生物量碳密度与年均降水量间呈现出显著正相关关系。在半干旱地区,降水量可能成为影响油松人工林生产力和碳固存的关键因素。  相似文献   

14.
林黛仪  周平  徐卫  李吉跃  林雯 《生态学报》2024,44(4):1429-1440
广东南岭保存着世界上同纬度带上最完整的亚热带植被,森林资源丰富,具有巨大的固碳潜力。然而,目前该地区不同森林植被类型的碳收支年积累量特征及月动态规律尚不明确。选择广东南岭国家级自然保护区内沟谷常绿阔叶林、山地常绿阔叶林、针阔叶混交林和山顶常绿阔叶矮林4种典型森林植被为研究对象,运用集成生物圈模型(IBIS)对其2020年总初级生产力(GPP)、净初级生产力(NPP)、净生态系统生产力(NEP)和土壤异养呼吸(Rh)进行模拟,利用样地调查数据对NPP模拟结果进行验证,分析该地区不同植被类型的碳收支年积累量特征及月变化特征。研究结果表明,2020年南岭不同植被类型GPP、NPP、NEP和Rh的平均值分别为1.709、0.718、0.596和0.123 kg C m-2 a-1,4种植被类型中GPP最高的是沟谷常绿阔叶林,NPP、NEP最高的是山地常绿阔叶林,山顶常绿阔叶矮林的GPP、NPP和NEP均相对较低。南岭不同植被类型全年各月均表现出碳汇(NEP>0),逐月NPP和NEP均表现为双峰变化规律...  相似文献   

15.
以祁连山西水林区青海云杉典型林分为研究对象,按照青海云杉分布界限海拔2500—3300 m,采用梯度格局法,研究祁连山青海云杉林乔木层和土壤层碳密度沿海拔梯度的空间分布特征,以期为准确估算祁连山青海云杉林碳储量变化影响因素提供科学依据。结果表明:(1)青海云杉林生物量平均值为115.83 t/hm~2,碳密度平均值为60.23 t/hm~2。生物量整体随海拔梯度增加表现为先增加后波动降低的趋势,在海拔2800 m处达到最高值(197.10 t/hm~2),海拔3300 m处达到最低值(7.66t/hm~2),且不同海拔梯度间差异显著。林分各器官生物量分配格局在各海拔处均表现为干根枝叶。(2)土壤有机碳含量平均值为54.80 g/kg,变化范围为31.49—76.96 g/kg。随着土壤层次的增加,除海拔3200 m和3300 m的土壤有机碳含量未表现出规律变化外,其他海拔梯度则均呈现出逐渐降低趋势。土壤有机碳密度在海拔2900 m最高,为245.40 t/hm~2,在海拔2700 m处最低,为130.24 t/hm~2;海拔2500—2700 m表现为平缓降低趋势,在2800 m处急剧上升,且海拔2800—3200 m呈现无显著性轻度波动变化,在海拔3300 m又急剧降低。(3)青海云杉林生态系统平均总碳密度为255.15 t/hm~2,乔木层和土壤层占总碳密度的比例分别为23.61%和76.39%,且不同海拔梯度间存在极显著差异。土壤有机碳密度与海拔、年均降水量、土壤有机碳含量、土壤全氮呈显著正相关,与年夏季平均气温呈显著负相关;乔木层碳密度与年夏季气温、林分密度、胸高断面积呈显著正相关,与海拔和土壤全氮呈显著负相关。(4)祁连山青海云杉林乔木层和土壤层碳密度均随海拔梯度变化受水热条件组合的改变而呈现规律变化,以中部海拔区段2800—3200 m碳密度较高。  相似文献   

16.
How stand density and species richness affect carbon (C) storage and net primary productivity (NPP) changes with forest succession is poorly understood. We quantified the C storage of trees and the aboveground NPP in an early successional secondary birch forest (birch forest) and a late successional mixed broadleaf-Korean pine (Pinus koraiensis) forest (mixed forest) in northeastern China. We found that: 1) tree C storage in the mixed forest (120.3 Mg C ha?1) was significantly higher than that in the birch forest (78.5 Mg C ha?1), whereas the aboveground NPP was not different between the two forest types; and 2) only stand density had a positive linear relationship with tree C storage and aboveground NPP in the birch forest. In the mixed forest, both tree C storage and aboveground NPP were significantly affected by the combination of the stand density and species richness. The tree C storage to stand density and species richness relationships were hump-shaped. The aboveground NPP increased with increasing stand density, but its relationship to species richness was hump-shaped. We conclude that the effect of stand density and species richness on tree C storage and aboveground NPP was influenced by forest stand succession, and such effects should be considered in studying stand density- and species richness- ecosystem function (e.g., C storage and NPP) relationships in temperate forest ecosystems.  相似文献   

17.
近自然化改造作为森林新增碳汇的最有希望的选择之一,将如何通过改变林分结构影响林分生物量和生产力进而影响林分固碳能力和潜力目前尚不清楚,因此,了解近自然化改造对人工林生物量及其分配的影响,对人工林生态系统碳管理具有重要意义。以马尾松近自然化改造林(P(CN))、马尾松未改造纯林(P(CK))、杉木近自然改造林(C(CN))和杉木未改造纯林(C(CK))4种人工林为研究对象,采用样方调查和生物量实测的方法,分析4种林分生物量差异,旨在揭示近自然化改造对马尾松和杉木人工林生物量及其分配的影响。结果表明:马尾松杉木人工林近自然化改造通过调整林分结构显著提升马尾松和杉木人工林生物量和生产力,8a后马尾松和杉木林分生物量分别增加46.71%和37.24%。乔木层生物量在林分生物量总量中占主导地位(95.48%-98.82%),并对林分生态系统总生物量变化起决定性作用。林分生物量和生产力的增加主要因为近自然化改造改变了林分群落结构,进而提高了乔木层生产力。研究结果表明,合理的经营措施不仅可以改善林分结构,提升林分生产力,并可为增强植被固碳能力创造有利条件。  相似文献   

18.
秦岭南坡红桦林土壤有机碳密度影响因素   总被引:2,自引:3,他引:2  
唐朋辉  党坤良  王连贺  马俊 《生态学报》2016,36(4):1030-1039
以秦岭南坡红桦林为研究对象,利用标准地调查法获得林分、地形、土壤相关数据,分析红桦林土壤有机碳密度(SOCD)分异特征及其与林分因子和地形因子间的关系。结果表明:秦岭南坡红桦林土壤有机碳密度总体均值为(69.02±12.90)t/hm2,原始红桦林土壤有机碳密度均值为(76.21±10.83)t/hm2,次生红桦林为(65.24±12.32)t/hm2,原始红桦林土壤有机碳密度比次生红桦林高16.81%,t-检验结果显示两者存在显著差异;在不同林区间,红桦林土壤有机碳密度亦存在显著差异(P0.05)。从地形因子看,红桦林土壤有机碳密度在不同坡位和坡向间未表现出显著差异,而海拔和坡度对红桦林土壤有机碳密度有较为显著的影响。土壤有机碳密度与海拔、林龄、乔木生物量和草本生物量呈显著正相关,与坡度和林分密度呈显著负相关;主成分分析表明:特征值大于1的四个主成分对土壤有机碳密度的方差累积贡献率为85.62%,海拔、坡度、林分密度和郁闭度是影响秦岭南坡红桦林土壤有机碳密度的主要因子;通过逐步回归分析得到利用海拔、坡度、林龄、林分密度、乔木生物量和草本生物量估算红桦林土壤有机碳密度的模型:SOCD=0.015E-0.332G-0.026FD+0.304SA+0.105BA+21.673BH+36.358。  相似文献   

19.
Terrestrial ecosystems are playing important roles in global carbon cycling. However, the information is still limited with regard to the semi-arid sandland or desert area, compared with the thorough studies on forest and grassland. We here estimated the biomass carbon storage, net primary production (NPP) and rain use efficiency (RUE) of Hunshandake Sandland, a semi-arid sandy region in Inner Mongolia covered with vegetation of Siberian elm (Ulmus pumila L.) sparse forest grassland. Five main habitats, i.e. fixed dunes, semi-fixed dunes, shifting dunes, lowland, and wetland, were compared to analyze the patterns of carbon storage and NPP distribution. The average biomass (9.19 Mg C ha?1) and NPP (4.79 Mg C ha?1 yr?1) of the sparse forest grassland were respectively 82% and 54% higher than the mean level of the surrounding temperate grassland. Governed by the same climate, sparse forest grassland ecosystem had RUE almost twice that of surrounding grassland. The ratio of below to aboveground biomass was 3.5: 1 in the sandland, indicating that most of the vegetational carbon was stored in belowground pool. Although trees were functionally critical in maintaining the integrity of sparse forest grassland, they accounted for only 10.6% and 1.2% of the biomass and NPP, respectively. The sparse forest grassland in Hunshandake Sandland should be recognized as a temperate savanna ecosystem which is distinctively different from typical temperate grassland in the same region as evidenced by the higher NPP and vegetation carbon storage. Well designed management and restoration efforts can potentially sustain ecosystem services in both forage production and carbon sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号