首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic degradation processes of poly[(R)-3-hydroxybutyric acid] (P(3HB)) and poly[(R)-3-hydroxybutyric acid-co-(R)-3-hydroxyvaleric acid] (P(3HB-co-3HV)) single crystals in the presence of PHB depolymerase from Ralstonia pickettii T1 were studied by real-time and static atomic force microscopy (AFM) observations. Fibril-like crystals were generated along the long axis of single crystals during the enzymatic degradation, and then the dimensions of fibril-like crystals were analyzed quantitatively. The morphologies and sizes of fibril-like crystals were dependent on the molecular weight and copolymer composition of polymers. For all samples, the crystalline thickness gradually decreased toward a tip from the root of a fibril-like crystal after enzymatic degradation for 1 h. The thinning of fibril-like crystals may be attributed to the destruction of chain-packing structure toward crystallographic c axis by the adsorption of enzyme. From the real-time AFM images, it was found that at the initial stage of degradation the enzymatic erosion started from the disordered chain-packing region in single crystals to form the grooves along the a axis. The generated fibril-like crystals deformed at a constant rate along the a axis with a constant rate after the induction time. The erosion rate at the grooves along the a axis increased with a decrease of molecular weight and with an increase of copolymer composition. On the other hand, the erosion rate along the a axis, at the tip of the fibril-like crystal, was dependent on only the copolymer composition, and the value increased with an increase in the copolymer composition. The morphologies and sizes of fibril-like crystals were governed by both the erosion rates along the a axis at the grooves and tip of fibril-like crystals. In addition, we were able to estimated the overall enzymatic erosion rate of single crystals by PHB depolymerase from the volumetric analysis.  相似文献   

2.
Poly[(R)-3-hydroxybutyric acid] and its copolymers were prepared by biosynthetic and chemosynthetic methods. The films of polyesters were prepared by both the solution-cast and melt-crystallized techniques. The enzymatic degradation of polyester films was carried out at 37 degrees C in an aqueous solution (pH 7.4) of PHB depolymerase from Alcaligenes faecalis. The rate of enzymatic erosion on the solution-cast films increased markedly with an increase in the fraction of second monomer units up to 10-20 mol% to reach a maximum value followed by a decrease in the erosion rate. Analysis of the water-soluble products liberated during the enzymatic degradation of polyester films showed the formation of a mixture of monomers and oligomers of (R)-3HB and hydroxyalkanoic acids units, suggesting that the active site of PHB depolymerase recognizes at least three monomeric units as substrate for the hydrolysis of ester bonds in a polymer chain. The rate of enzymatic erosion of melt-crystallized polyester films decreased with an increase in crystallinity. PHB depolymerase predominantly hydrolyzed the polymer chains in the amorphous phase and subsequently eroded crystalline phase. In addition, the enzymatic degradation of crystalline phase by PHB depolymerase progressed from the edges of crystalline lamellar stacks. The enzymatic erosion rate of crystalline phase in polyester films decreased with an increase in the lamellar thickness.  相似文献   

3.
Melt-crystallized films of poly[(R)-3-hydroxybutyric acid-co-10mol% 6-hydroxyhexanoic acid] (P[(R)-3HB-co-6HH]) were prepared by isothermal crystallization at various temperatures for 3 days, and subsequently stored at room temperature after the films formed well-developed and volume-filled spherulites. The lamellar morphologies and properties of melt-crystallized films were characterized by means of wide-angle X-ray diffraction, small-angle X-ray scattering, differential scanning calorimetry, transmission electron microscopy, and atomic force microscopy. The melting endotherm of P[(R)-3HB-co-6HH] films was composed of a broad peak starting around room temperature and of a sharper peak starting above the isothermal crystallization temperature. The stacking of flat-on lamellae with lamellar periodicity of 8-10 nm was detected on the surface of P[(R)-3HB-co6HH] films after the primary crystallization at 110 degrees C. On storage at room temperature above the Tg (-5 degrees C) of copolyester, thin crystals of 1-4 nm thickness appeared on the surface of P[(R)-3HB-co-6HH] films crystallized at 110 degrees C. These results suggest that long sequences of (R)-3HB units in a random copolyester form relatively thick P[(R)-3HB] crystalline lamellae during the primary crystallization process at a given crystallization temperature, while shorter sequences of (R)-3HB units, which are incapable of crystallizing at a given crystallization temperature, form relatively thin crystalline lamellae during the subsequent crystallization process at room temperature.  相似文献   

4.
Reaction processes of poly[(R)-3-hydroxybutyric acid] (P(3HB)) with two types of poly(hydroxybutyric acid) (PHB) depolymerases secreted from Ralstonia pickettii T1 and Penicillium funiculosum were characterized by means of atomic force microscopy (AFM) and quartz crystal microbalance (QCM). The PHB depolymerase from R. pickettii T1 consists of catalytic, linker, and substrate-binding domains, whereas the one from P. funiculosum lacks a substrate-binding domain. We succeeded in observing the adsorption of single molecules of the PHB depolymerase from R. pickettii T1 onto P(3HB) single crystals and the degradation of the single crystals in a phosphate buffer solution at 37 degrees C by real-time AFM. On the contrary, the enzyme molecule from P. funiculosum was hardly observed at the surface of P(3HB) single crystals by real-time AFM, even though the enzymatic degradation of the single crystals was surely progressed. On the basis of the AFM observations in air of the P(3HB) single crystals after the enzymatic treatments, however, not only the PHB depolymerase from R. pickettii T1 but also that from P. funiculosum adsorbed onto the surface of P(3HB) crystals, and both concentrations of the enzymes on the surface were nearly identical. This means both enzymes were adsorbed onto the surface of P(3HB) single crystals. Moreover, QCM measurements clarified quantitatively the differences in detachment behavior between two types of PHB depolymerases, namely the enzyme from R. pickettii T1 was hardly detached but the enzyme from P. funiculosum was released easily from the surface of P(3HB) crystals under an aqueous condition.  相似文献   

5.
The escalating problems regarding the treatment of plastic waste materials have led to development of biodegradable plastics. At present, a number of aliphatic polyesters; such as poly[(R)-3-hydroxybutyrate] (PHB), poly(l-lactide), polycaplolactone, poly(ethylene succinate) and poly(butylene succinate) have been developed. Among these aliphatic polyesters, PHB is one of the most attractive since it can undergo biodegradation at various environmental conditions and has properties similar to polypropylene. Although much effort has been made to produce PHB and its copolyesters from renewable resources or through microbial processes, their commercialization and widespread application are still not economically attractive compared to conventional non-biodegradable plastic. Moreover, wide application of PHB and its copolyesters as biodegradable plastic have not only been limited by the cost of production but also by their stinky smell during industrial processing. However, (R)-3-hydroxybutyric acid, a monomer of PHB has wide industrial and medical applications. (R)-3-hydroxybutyric acid can also serve as chiral precursor for synthesis of pure biodegradable PHB and its copolyesters. A number of options are available for production of (R)-3-hydroxybutyric acid. This review discusses each of these options to assess the alternatives that exist for production of pure biodegradable PHB and its copolyesters with good properties.  相似文献   

6.
Catalyzed transesterification in the melt is used to produce diblock copolymers of poly([R]-3-hydroxybutyric acid), PHB, and monomethoxy poly(ethylene glycol), mPEG, in a one-step process. Bacterial PHB of high molecular weight is depolymerized by consecutive and partly simultaneous reactions: pyrolysis and transesterification. The formation of diblocks is accomplished by the nucleophilic attack from the hydroxyl end-group of the mPEG catalyzed by bis(2-ethylhexanoate) tin. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae.  相似文献   

7.
8.
Forty-two Rhizobium strains obtained from different culture collections were evaluated quantitatively for poly(3-hydroxy-butyric acid) [PHB] production in shake flask culture. The majority of the strains produced the maximum amount of PHB during the late exponential or stationary phase of growth. Synthesis and accumulation of PHB in different species of Rhizobium were found to vary between 1-38% of their dry biomass. Growth and PHB production by the Rhizobium strain TAL-640 were greatly influenced by the C-source and D-mannitol was fundamental to both processes. The identity and purity of PHB isolated from TAL-640 have also been confirmed by UV-, IR- and 1H-NMR spectroscopic analyses.  相似文献   

9.
A Hydrogenophaga pseudoflava strain was able to synthesize poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) [P(3HB-co-4HB)] having a high level of 4-hydroxybutyric acid monomer unit (4HB) from gamma-butyrolactone. In a two-step process in which the first step involved production of cells containing a minimum amount of poly(3-hydroxybutyric acid) [P(3HB)] and the second step involved polyester accumulation from the lactone, approximately 5 to 10 mol% of the 3-hydroxybutyric acid (3HB) derived from the first-step culture was unavoidably reincorporated into the polymer in the second cultivation step. Reincorporation of the 3HB units produced from degradation of the first-step residual P(3HB) was confirmed by high-resolution 13C nuclear magnetic resonance spectroscopy. In order to synthesize 3HB-free poly(4-hydroxybutyric acid) [P(4HB)] homopolymer, a three-stage cultivation technique was developed by adding a nitrogen addition step, which completely removed the residual P(3HB). The resulting polymer was free of 3HB. However, when the strain was grown on gamma-butyrolactone as the sole carbon source in a synthesis medium, a copolyester of P(3HB-co-4HB) containing 45 mol% 3HB was produced. One-step cultivation on gamma-butyrolactone required a rather long induction time (3 to 4 days). On the basis of the results of an enzymatic study performed with crude extracts, we suggest that the inability of cells to produce 3HB in the multistep culture was due to a low level of 4-hydroxybutyric acid (4HBA) dehydrogenase activity, which resulted in a low level of acetyl coenzyme A. Thus, 3HB formation from gamma-butyrolactone is driven by a high level of 4HBA dehydrogenase activity induced by long exposure to gamma-butyrolactone, as is the case for a one-step culture. In addition, intracellular degradation kinetics studies showed that P(3HB) in cells was completely degraded within 30 h of cultivation after being transferred to a carbon-free mineral medium containing additional ammonium sulfate, while P(3HB-co-4HB) containing 5 mol% 3HB and 95 mol% 4HB was totally inert in interactions with the intracellular depolymerases. Intracellular inertness could be a useful factor for efficient synthesis of the P(4HB) homopolymer and of 4HB-rich P(3HB-co-4HB) by the strain used in this study.  相似文献   

10.
Park JW  Doi Y  Iwata T 《Biomacromolecules》2004,5(4):1557-1566
Blends of poly(L-lactic acid) (PLLA) with two kinds of poly[(R)-3-hydroxybutyrate] (PHB) having different molecular weights, commercial-grade bacterial PHB (bacterial-PHB) and ultrahigh molecular weight PHB (UHMW-PHB), were prepared by the solvent-casting method and uniaxially drawn at two drawing temperatures, around PHB's T(g) (2 degrees C) for PHB-rich blends and around PLLA's T(g) (60 degrees C) for PLLA-rich blends. Differential scanning calorimetry analysis showed that this system was immiscible over the entire composition range. Mechanical properties of all of the samples were improved in proportion to the draw ratio. Although PLLA domains in bacterial-PHB-rich blends remained almost unstretched during cold drawing, a good interfacial adhesion between two polymers and the reinforcing role of PLLA components led to enhanced mechanical properties proportionally to the PLLA content at the same draw ratio. On the contrary, in the case of UHMW-PHB-rich blends, the minor component PLLA was found to be also oriented by cold drawing in ice water due to an increase in the interfacial entanglements caused by the very long chain length of the matrix polymer. As a result, their mechanical properties were considerably improved with increasing PLLA content compared with the bacterial-PHB system. Scanning electron microscopy observations on the surface and cross-section revealed that a layered structure with uniformly oriented microporous in the interior was obtained by selectively removal of PLLA component after simple alkaline treatment.  相似文献   

11.
Enzymatic degradation processes of flat-on lamellar crystals in melt-crystallized thin films of poly[(R)-3-hydroxybutyric acid] (P(3HB)) and its copolymers were characterized by real-time atomic force microscopy (AFM) in a phosphate buffer solution containing PHB depolymerase from Ralstonia pickettii T1. Fiberlike crystals with regular intervals were generated along the crystallographic a axis at the end of lamellar crystals during the enzymatic degradation. The morphologies and sizes of the fiberlike crystals were markedly dependent on the compositions of comonomer units in the polyesters. Length, width, interval, and thickness of the fiberlike crystals after the enzymatic degradation for 2 h were measured by AFM, and the dimensions were related to the solid-state structures of P(3HB) and its copolymers. The width and thickness decreased at the tip of fiberlike crystals, indicating that the enzymatic degradation of crystals takes place not only along the a axis but also along the b and c axes. These results from AFM measurement were compared with the data on crystal size by wide-angle X-ray diffraction, and on lamellar thickness and long period by small-angle X-ray scattering. In addition, the enzymatic erosion rate of flat-on lamellar crystals along the a axis was measured from real-time AFM height images. A schematic glacier model for the enzymatic degradation of flat-on lamellar crystals of P(3HB) by PHB depolymerase has been proposed on the basis of the AFM observations.  相似文献   

12.
Summary Kinetics of poly - HB accumulation in Pseudomonas 2F, a recently isolated and new strain, differ considerably from the behaviour found hitherto with other strains. After a period of carbon limitation of 1 hour, without the application of growth - limiting conditions, the accumulation of poly - HB is evidently accelerated (carbon - overcompensation).  相似文献   

13.
In high cell density cultivation processes the productivity is frequently constrained by the bioreactor maximum oxygen transfer capacity. The productivity can often be increased by operating the process at low dissolved oxygen concentrations close to the limitation level. This may be accomplished with a closed-loop controller that regulates the dissolved oxygen concentration by manipulating the dominant carbon source feeding rate. In this work we study this control problem in a pilot 50l bioreactor with a high cell density recombinant P. pastoris cultivation in complex media. The study focuses on the design of accurate stable adaptive controllers, with guaranteed exponential convergence and its relation with the calibration of controller parameters. Two adaptive control strategies were tested in the pilot bioreactor: a model reference adaptive controller with a linear reference model and an integral feedback controller with adaptive gain. The latter alternative proved to be more robust to errors in the measurements of the off-gas composition. Concerning the instrumentation, algorithms were derived assuming that both the dissolved oxygen tension and off-gas composition are measured on-line, but also the case of only dissolved oxygen being measured is addressed. It was verified that the measurement of off-gas composition might not improve the controller performance due to measurement and process time delays.  相似文献   

14.
Aim:  Ultraviolet (UV) mutagenesis was carried out to obtain mutant strains of Cupriavidus necator that could produce ( R )-3-hydroxybutyric acid [( R )-3-HB] in the culture supernatant.
Methods and Results:  C. necator (formerly known as Ralstonia eutropha ) was subjected to UV radiation to generate mutants that are capable of producing ( R )-3-HB in the culture supernatant. Results indicated that UV mutagen disrupted the phbB ( phbB knock-out) and thus, promoted production of ( R )-3-HB in mutant strains. Inclusion of acetoacetate esters (carbonyl compounds) in the culture broth led to increased production of ( R )-3-HB. Thus, acetoacetyl-CoA (an intermediate of the PHB synthetic pathway) might have been converted to acetoacetate, which in the presence of ( R )-3-HB dehydrogenase and NADPH/NADP+, resulted in extracellular production of ( R )-3-HB.
Conclusions:  UV mutagenesis proved to be a satisfactory method in generating interesting mutants for extracellular production of ( R )-3-HB. Extracellular production of ( R )-3-HB upon addition of acetoacetate esters would suggest a likely ( R )-3-HB biosynthetic pathway in C. necator .
Significance and Impact of the Study:  Mutants obtained in this study are very useful for production of ( R )-3-HB. For the first time, the production of ( R )-3-HB by C. necator via acetoacetate is reported.  相似文献   

15.
Cytochromes P450 play a key role in the drug and steroid metabolism in the human body. This leads to a high interest in this class of proteins. Mammalian cytochromes P450 are rather delicate. Due to their localization in the mitochondrial or microsomal membrane, they tend to aggregate during expression and purification and to convert to an inactive form so that they have to be purified and stored in complex buffers. The complex buffers and low storage temperatures, however, limit the feasibility of fast, automated screening of the corresponding cytochrome P450-effector interactions, which are necessary to study substrate-protein and inhibitor-protein interactions. Here, we present the production and isolation of functionalized poly(3-hydroxybutyrate) granules (PHB bodies) from Bacillus megaterium MS941 strain. In contrast to the expression in Escherichia coli, where mammalian cytochromes P450 are associated to the cell membrane, when CYP11A1 is heterologously expressed in Bacillus megaterium, it is located on the PHB bodies. The surface of these particles provides a matrix for immobilization and stabilization of the CYP11A1 during the storage of the protein and substrate conversion. It was demonstrated that the PHB polymer basis is inert concerning the performed conversion. Immobilization of the CYP11A1 onto the PHB bodies allows freeze-drying of the complex without significant decrease of the CYP11A1 activity. This is the first lyophilization of a mammalian cytochrome P450, which allows storage over more than 18 days at 4 °C instead of storage at − 80 °C. In addition, we were able to immobilize the cytochrome P450 on the PHB bodies in vitro. In this case the expression of the protein is separated from the production of the immobilization matrix, which widens the application of this method. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

16.
Feasibility of producing (R)-3-hydroxybutyric acid ((R)-3-HB) using wild type Azohydromonas lata and its mutants (derived by UV mutation) was investigated. A. lata mutant (M5) produced 780 mg/l in the culture broth when sucrose was used as the carbon source. M5 was further studied in terms of its specificity with various bioconversion substrates for production of (R)-3-HB. (R)-3-HB concentration produced in the culture broth by M5 mutant was 2.7-fold higher than that of the wild type strain when sucrose (3% w/v) and (R,S)-1,3-butanediol (3% v/v) were used as carbon source and bioconversion substrate, respectively. Bioconversion of resting cells (M5) with glucose (1% v/w), ethylacetoacetate (2% v/v), and (R,S)-1,3-butanediol (3% v/v), resulted in (R)-3-HB concentrations of 6.5 g/l, 7.3 g/l and 8.7 g/l, respectively.  相似文献   

17.
Medium chainlength (mcl) polyhydroxyalkanoates (PHAs) are a class of polymers receiving attention because of their potential as renewable, biodegradable and high tech properties. Unlike most short chain PHAs, mcl-PHAs are low crystallinity and elastomeric in character. In this paper we wish to point out that in their broad properties mcl-PHAs might be classified as thermotropic liquid crystals with dynamic conformational disorder and long range orientational order. As the characterization of mcl-PHAs progresses, their similarities to liquid crystalline elastomers are noteworthy. Wunderlich coined the acronym CONDIS from the words "conformational disorder" to categorize this type of liquid crystal. Thermal analysis reveals a T(g) of -40 to -45°C with several T(m) peaks. The chemistry of the elastomer from (13)C NMR confirms the poly(3-hydroxynonanoate), PHN, composition of the starting material along with two other samples containing double bonds: PHNU-18 and PHNU-31 where the numeral stands for the percent of double bonds.  相似文献   

18.
Summary Size distributions of PHB granules synthesized in recombinant Escherichia coli are determined by photosedimentation. Mean granule Stokes diameters are in the range 1.13–1.25 m, which is larger than reported values for wild type microorganisms. Treatment with 1.5% hypochlorite and mild centrifugation did not affect granule size distribution. Treatment with 10% hypochlorite led to a significant reduction in mean diameter and total PHB.  相似文献   

19.
Polyhydroxyalkanoates (PHAs) are polyesters naturally produced by bacteria that have properties of biodegradable plastics and elastomers. A PHA synthase from Pseudomonas aeruginosa modified at the carboxy-end for peroxisomal targeting was transformed in Pichia pastoris. The PHA synthase was expressed under the control of the promoter of the P. pastoris acyl-CoA oxidase gene. Synthesis of up to 1% medium-chain-length PHA per g dry weight was dependent on both the expression of the PHA synthase and the presence of oleic acid in the medium. PHA accumulated as inclusions within the peroxisomes. P. pastoris could be used as a model system to study how peroxisomal metabolism needs to be modified to increase PHA production in other eukaryotes, such as plants.  相似文献   

20.
Fiber morphology and crystalline structure of poly[(R)-3-hydroxybutyrate] (P(3HB)) and stereocomplexed poly(lactide) (PLA) nanofibers were investigated by using scanning and transmission electron microscopies and X-ray and electron diffractions. In the P(3HB) nanofibers spun from less than 1 wt% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solution, planar zigzag conformation (beta-form) as well as 2(1) helix conformation (alpha-form) structure was formed. Based on the electron diffraction measurement of single P(3HB) nanofiber, it was revealed that the molecular chains of P(3HB) align parallel to the fiber direction. From the enzymatic degradation test of P(3HB) nanofiber, it was shown that beta-form molecular chains are degraded more preferentially than alpha-form chains. Stereocomplexed PLA nanofibers were electrospun from 1 wt% poly(l-lactide)/poly(d-lactide) (PLLA/PDLA) solution in HFIP, which contains equal amounts of PLLA and PDLA. While as-spun stereocomplexed PLA nanofiber was amorphous, PLA nanofiber annealed at 100 degrees C contained only racemic crystal. It was supposed that the crystallization behavior of stereocomplexed PLA in the nanofiber is affected by the electrospinning process, which forcibly exerts the strain onto the polymer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号