首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
4.
Recently, we have shown that erythrocytes obtained from patients with chronic renal failure (CRF) exhibited an increased rate of ATP formation from adenine as a substrate. Thus, we concluded that this process was in part responsible for the increase of adenine nucleotide concentration in uremic erythrocytes. There cannot be excluded however, that a decreased rate of adenylate degradation is an additional mechanism responsible for the elevated ATP concentration. To test this hypothesis, in this paper we compared the rate of adenine nucleotide breakdown in the erythrocytes obtained from patients with CRF and from healthy subjects.Using HPLC technique, we evaluated: (1) hypoxanthine production by uremic RBC incubated in incubation medium: (a) pH 7.4 containing 1.2 mM phosphate (which mimics physiological conditions) and (b) pH 7.1 containing 2.4 mM phosphate (which mimics uremic conditions); (2) adenine nucleotide degradation (IMP, inosine, adenosine, hypoxanthine production) by uremic RBC incubated in the presence of iodoacetate (glycolysis inhibitor) and EHNA (adenosine deaminase inhibitor). The erythrocytes of healthy volunteers served as control.The obtained results indicate that adenine nucleotide catabolism measured as a hypoxanthine formation was much faster in erythrocytes of patients with CRF than in the cells of healthy subjects. This phenomenon was observed both in the erythrocytes incubated at pH 7.4 in the medium containing 1.2 mM inorganic phosphate and in the medium which mimics hyperphosphatemia (2.4 mM) and metabolic acidosis (pH 7.1). The experiments with EHNA indicated that adenine nucleotide degradation proceeded via AMP-IMP-Inosine-Hypoxanthine pathway in erythrocytes of both patients with CRF and healthy subjects. Iodoacetate caused a several fold stimulation of adenylate breakdown. Under these conditions: (a) the rate of AMP catabolites (IMP + inosine + adenosine + hypoxanthine) formation was substantially higher in the erythrocytes from patients with CRF; (b) in erythrocytes of healthy subjects degradation of AMP proceeded via IMP and via adenosine essentially at the same rate; (c) in erythrocytes of patients with CRF the rate of AMP degradation via IMP was about 2 fold greater than via adenosine.The results presented in this paper suggest that adenine nucleotide degradation is markedly accelerated in erythrocytes of patients with CRF.  相似文献   

5.
6.
The uptake activity ratio for AMP, ADP, and ATP in mutant (T-1) cells of Escherichia coli W, deficient in de novo purine biosynthesis at a point between IMP and 5-aminoimidazole-4-carboxiamide-1-β-D-ribofuranoside (AICAR), was 1:0.43:0.19. This ratio was approximately equal to the 5'-nucleotidase activity ratio in E. coli W cells. The order of inhibitory effect on [2-3H]ADP uptake by T-1 cells was adenine > adenosine > AMP > ATP. About 2-fold more radioactive purine bases than purine nucleosides were detected in the cytoplasm after 5 min in an experiment with [8-1?C]AMP and T-1 cells. Uptake of [2-3H]adenosine in T-1 cells was inhibited by inosine, but not in mutant (Ad-3) cells of E. coli W, which lacked adenosine deaminase and adenylosuccinate lyase. These experiments suggest that AMP, ADP, and ATP are converted mainly to adenine and hypoxanthine via adenosine and inosine before uptake into the cytoplasm by E. coli W cells.  相似文献   

7.
8.
9.
Inosine-producing cultures were found among mutants resistant to 6-mercaptoguanine (6MG) derived from a 5'-inosinic acid (IMP)-producing strain, KY 13102, of Brevibacterium ammoniagenes. Inosine-producing ability was very frequent among the mutants resistant to a low concentration (10 to 50 mug/ml) of 6MG. The accumulation of inosine by strain KY 13714 was stimulated by a low concentration of adenine (25 mg/liter) but was depressed by high levels of adenine. The accumulation by strain KY 13714 was not inhibited by manganese ion but instead was stimulated by its excess, in contrast to IMP accumulation by KY 13102. Addition of hypoxanthine at an early stage of cultivation accelerated inosine accumulation. Furthermore, on addition of hypoxanthine and of a surface-activating agent after 48 hr of cultivation, the simultaneous accumulation of IMP and inosine was observed. A 9.3-mg amount of inosine per ml accumulated after 4 days of cultivation at 30 C. The inosine-producing mutant did not differ from the IMP-producing strain either in 5' purine nucleotide degradation or in IMP formation from hypoxanthine. However, it was found to be completely devoid of purine nucleoside-degrading activity. The conversion of IMP accumulation to inosine can be explained by the lack of nucleosidedegrading activity. The relationship between deficiency of nucleoside-degrading activity and resistance to low levels of 6MG is discussed, and a new mechanism for 6MG resistance is presented.  相似文献   

10.
The inhibition of Escherichia coli strain B and strain W-11 by 6-methylpurine depended on the formation of 6-methylpurine ribonucleotide by the action of adenine phosphoribosyltransferase (AMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.7). 6-Methylpurine ribonucleotide inhibited the de novo synthesis of purines, presumably via pseudofeedback inhibition of phosphoribosylpyrophosphate amidotransferase (EC 2.4.2.14). The same mechanism accounted for its inhibition of adenylosuccinate synthetase [IMP: l-aspartate ligase (GDP), EC 6.3.4.4]. Adenine and 6-methylaminopurine prevented inhibition by competing for the action of adenine phosphoribosyltransferase. In addition, adenine reversed this inhibition by replenishing the AMP to bypass both sites of inhibition. Nonproliferating suspensions of strain B-94, which lacked adenylosuccinate lyase (EC 4.3.2.2), converted exogenous hypoxanthine and aspartate to succinoadenine derivatives which accumulated in the medium. Compounds which inhibited adenylosuccinate synthetase inhibited accumulation of the succinoadenine derivatives. A method was described for the isolation of mutants which potentially possessed an altered adenylosuccinate synthetase.  相似文献   

11.
A possible reaction mechanism for the dehydration of glycinamide (3) and N,N'-diformylurea (4) yielding hypoxanthine (2) has been investigated. Furthermore, a potential prebiotic route converting hypoxanthine (2) into adenine (1) via phosphate activation followed by substitution reaction with NH3 was studied. This reaction mimics the proposed biochemical mechanism for the conversion of IMP to AMP.  相似文献   

12.
13.
14.
15.
virR is the central regulatory locus required for coordinate temperature-regulated virulence gene expression in the human enteric pathogens of Shigella species. Detailed characterization of VirR+ clones revealed that virR consisted of a 411 bp open reading frame (ORF) that mapped to a chromosomally located 1.8kb EcoRI-AccI DNA fragment from Shigella flexneri. Insertional inactivation of the virR ORF at a unique HpaI restriction site resulted in a loss of VirR+ activity. The virR ORF nucleotide sequence was virtually identical to the Escherichia coli hns gene, which encodes the histone-like protein, H-NS. Based on the predicted amino acid sequence of E. coli H-NS, only a single conservative base-pair change was identified in the virR gene. An additional clone, designated VirRP, which only partially complemented the virR mutation, was also characterized and determined by Southern hybridization and nucleotide sequence analysis to be unique from virR. Subclone mapping of this clone indicated that the VirRP phenotype was a result of the multiple copy expression of the S. flexneri gene for tRNA(Tyr). These data constitute the first direct genetic evidence that virR is an analogue of the E. coli hns gene, and suggest a model for temperature regulation of Shigella species virulence via the bacterial translational machinery.  相似文献   

16.
Guanosine metabolism in Neurospora crassa   总被引:1,自引:0,他引:1  
Two aspects of guanosine metabolism in Neurospora have been investigated. (a) The inability of adenine mutants (blocked prior to IMP synthesis) to use guanosine as a nutritional supplement; and (b) the inhibitory effect of guanosine on the utilization of hypoxanthine as a purine source for growth by these mutants. Studies on the utilization of guanosine indicated that the proportion of adenine derived from guanosine may be limiting for the growth of adenine mutants. In wild type, adenine is produced through the biosynthetic pathway when grown in the presence of guanosine. The amount of adenine produced through the de novo biosynthesis in wild type increases with increasing concentrations of guanosine in the medium. However, the total purine synthesis does not increase. Guanosine inhibits the uptake of hypoxanthine severely. In addition, guanosine and its nucleotide derivatives also inhibit the hypoxanthine phosphoribosyltransferase activity, at the same time stimulating the adenine phosphoribosyltransferase activity. Guanosine's effects on the uptake of hypoxanthine and its conversion to the nucleotide form may be the reasons why guanosine inhibits the utilization of hypoxanthine but not adenine by these mutants.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号