首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of c-fos mRNA in mouse thymocytes was compared when the cells were stimulated by concanavalin A (Con A), the Ca2+ ionophore A23187 or the phorbol ester, TPA, either separately or by combinations of these mitogens. The c-fos response to mitogenic concentrations of Con A could not be attributed either to the rise in [Ca2+]i it induces or to activation of protein kinase C. Thus, although Con A causes the breakdown of phosphatidylinositol 4,5-bisphosphate in these cells, neither of the signals which can be generated by this response was responsible for the activation of the c-fos gene by Con A. This implies that some other unidentified signal generated by Con A activates the c-fos gene.  相似文献   

2.
Protein kinase C (PKC) regulates activation of the Raf-1 signaling cascade by growth factors, but the mechanism by which this occurs has not been elucidated. Here we report that one mechanism involves dissociation of Raf kinase inhibitory protein (RKIP) from Raf-1. Classic and atypical but not novel PKC isoforms phosphorylate RKIP at serine 153 (Ser-153). RKIP Ser-153 phosphorylation by PKC either in vitro or in response to 12-O-tetradecanoylphorbol-13-acetate or epidermal growth factor causes release of RKIP from Raf-1, whereas mutant RKIP (S153V or S153E) remains bound. Increased expression of PKC can rescue inhibition of the mitogen-activated protein (MAP) kinase signaling cascade by wild-type but not mutant S153V RKIP. Taken together, these results constitute the first model showing how phosphorylation by PKC relieves a key inhibitor of the Raf/MAP kinase signaling cascade and may represent a general mechanism for the regulation of MAP kinase pathways.  相似文献   

3.
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.  相似文献   

4.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

5.
6.
The effects of protein kinase C (PKC) activation and inhibition on the inositol 1,4,5-trisphosphate (IP3) and cytosolic Ca2+ ([Ca2+]i) responses of rat submandibular acinar cells were investigated. IP3 formation in response to acetylcholine (ACh) was not affected by the PKC activator phorbol 12-myristate 13-acetate (PMA), nor by the PKC inhibitor calphostin C (CaC). The ACh-elicited initial increase in [Ca2+]i in the absence of extracellular Ca2+ was not changed by short-term (0.5 min) exposure to PMA, but significantly reduced by long-term (30 min) exposure to PMA, and also by pre-exposure to the PKC inhibitors CaC and chelerythrine chloride (ChC). After ACh stimulation, subsequent exposure to ionomycin caused a significantly (258%) larger [Ca2+]i increase in CaC-treated cells than in control cells. However, pre-exposure to CaC for 30 min did not alter the Ca2+ release induced by ionomycin alone. These results suggest that the reduction of the initial [Ca2+]i increase is due to an inhibition of the Ca2+ release mechanism and not to store shrinkage. The thapsigargin (TG)-induced increase in [Ca2+]i was significantly reduced by short-term (0.5 min), but not by long-term (30 min) exposure to PMA, nor by pre-exposure to ChC or CaC. Subsequent exposure to ionomycin after TG resulted in a significantly (70%) larger [Ca2+]i increase in PMA-treated cells than in control cells, suggesting that activation of PKC slows down the Ca2+ efflux or passive leak seen in the presence of TG. Taken together, these results indicate that inhibition of PKC reduces the IP3-induced Ca2+ release and activation of PKC reduces the Ca2+ efflux seen after inhibition of the endoplasmic Ca2+-ATPase in submandibular acinar cells.  相似文献   

7.
Ca2+ requirement for protein kinase C activation is a matter of controversy. In this report we have examined Ca2+ dependency of the reaction in different assay systems and shown that the enzyme response to Ca2+, as well as diacylglycerol, depends upon phospholipid species, protein substrate and lipid conformation (micelles or sonicates). These results emphasize that the enzyme characteristics as defined in reconstituted membrane systems may not have a physiological relevance.  相似文献   

8.
Increases in the intracellular Ca2+ concentration of human platelets caused by receptor agonists, such as thrombin, 9,11-epithio-11,12-methanothromboxane A2 (STA2), platelet-activating factor (PAF) and arginine-vasopressin, were inhibited by prior addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) in time-dependent and concentration-dependent manners. The inhibitions were mostly reversed by staurosporine, and inhibitor of protein kinase C, added 1 min before TPA. Prior treatment of platelets with thrombin or STA2, the efficacious Ca2+ mobilizer, suppressed the increase in the intracellular Ca2+ concentration of the cells to other agonists, but treatment with less efficacious PAF or vasopressin did not. The heterologous receptor desensitizations were also reversed by staurosporine. The antibody, directed against the carboxy-terminal region of the alpha subunits 1 and 2 of the inhibitory guanine-nucleotide-binding proteins (Gi1 alpha and Gi2 alpha), was raised in rabbit and was used to immunoprecipitate Gi alpha in 32P-labeled platelets. The radioactivity was detected in Gi alpha after incubation of 32P-labeled platelets with TPA, thrombin or STA2, but not in the cells incubated with PAF or vasopressin. The time-dependency or concentration-dependency of TPA-induced phosphorylation of Gi alpha was similar to the dependency of its inhibitory action on agonist-induced Ca2+ mobilization. Thus, strong activation of Ca2+/phospholipid-dependent protein kinase C by phorbol ester or agonists of certain Ca(2+)-mobilizing receptors leads to phosphorylation of the alpha subunit of guanine-nucleotide-binding protein, thereby impairing the coupling of the G protein to receptors as a feedback regulatory component of the receptor-triggered intracellular Ca(2+)-mobilizing system.  相似文献   

9.
Down-modulation of Ca2+-activated, phospholipid-dependent protein kinase (protein binase C), which was accomplished by pretreatment with phorbol-12,13-dibutyrate for 24 h, resulted in the loss of a phorbol ester-induced stimulation of hexose transport activity in Swiss 3T3 cells. In these cells, however, platelet-derived growth factor as well as Ca2+ ionophore A23187 were still able to induce stimulation of hexose transport activity accompanied by the elevation of intracellular free Ca2+ concentration. Since chelation of extracellular Ca2+ inhibited this stimulation, inflow of extracellular Ca2+ into cytoplasm seemed to be esential for the stimulatory effect of platelet-derived growth factor and A23187 on hexose transport. Epidermal growth factor and insulin also stimulated hexose transport activity regardless of the absence of protein kinase C. However, in the case of epidermal growth factor, intracellular Ca2+, but not extracellular Ca2+, was found to be necessary for the stimulation. On the other hand, insulin stimulated the hexose transport independent of both intra- and extracellular Ca2+.  相似文献   

10.
The findings presented in this study provide evidence that BSF1 receptors and mIg transmit signals via dissimilar transduction mechanisms that result in a common biologic response, hyper-Ia expression. Specifically, BSF1-containing supernatant does not induce PtdInsP2 hydrolysis as determined by measurement of PtdOH and InsP3. Additionally, BSF1 does not stimulate Ca2+ mobilization, PKC translocation from cytosol to membrane, or membrane depolarization. All of these metabolic events appear to play a central role in hyper-Ia expression mediated by mIg and are initiated after treatment of resting B cells with anti-Ig antibodies. In vitro phosphorylation studies with partially purified plasma membranes from resting B cells revealed that BSF1 interaction with membrane receptors stimulates a membrane-associated protein kinase that phosphorylates an endogenous protein of 44 KDa. Anti-Ig does not stimulate phosphorylation of the 44 KDa protein, suggesting that it does not activate the membrane-associated protein kinase. This observation provides the first evidence of a signal transduction mechanism associated with BSF1-receptor ligation. It indicates that although BSF1 does not modulate events associated with PKC activation, it may function via activation of a membrane-associated protein kinase. This provides a focal point for further studies directed at elucidating signal transduction resulting from BSF1-receptor interaction.  相似文献   

11.
Calmodulin purified from bovine brain markedly stimulated cyclic GMP-dependent protein kinase from pig lung in the presence of cyclic GMP. This stimulation by calmodulin did not require Ca2+ and was dose-dependent up to optimal amounts, but the extent of stimulation decreased at concentrations over the optimal condition. The concentrations of cyclic GMP and cyclic AMP producing half-maximal stimulation were 4.5 × 10?8 M and 5.0 × 10?6 M respectively, under optimal conditions. Calmodulin increased maximum velocity without altering the Km for ATP. These effects of calmodulin on cyclic GMP-dependent protein kinase were similar to those of the stimulatory modulator described by Kuo and Kuo (J. Biol. Chem. 251, 4283–4286, 1976). Ouf findings indicate that calmodulin regulates enzyme activity both Ca2+-dependently and independently.  相似文献   

12.
The expression of protein kinase C (PKC) isoforms and the modulation of Ca2+ mobilization by PKC were investigated in the human submandibular duct cell line A253. Three new PKC (nPKC) isoforms (, , and ) and one atypical PKC (aPKC) isoform () are expressed in this cell line. No classical PKC (cPKC) isoforms were present. The effects of the PKC activator phorbol 12-myristate-13-acetate (PMA) and of the PKC inhibitors calphostin C (CC) and bisindolymaleimide I (BSM) on inositol 1,4,5-trisphosphate (IP3) and Ca2+ responses to ATP and to thapsigargin (TG) were investigated. Pre-exposure to PMA inhibited IP3 formation, Ca2+ release and Ca2+ influx in response to ATP. Pre-exposure to CC or BSM slightly enhanced IP3 formation but inhibited the Ca2+ release and the Ca2+ influx induced by ATP. In contrast, pre-exposure to PMA did not modify the Ca2+ release induced by TG, but reduced the influx of Ca2+ seen in the presence of this Ca2+-ATPase inhibitor. These results suggest that PKC modulates elements of the IP3/Ca2+ signal transduction pathway in A253 cells by (1) inhibiting phosphatidylinositol turnover and altering the sensitivity of the Ca2+ channels to IP3, (2) altering the activity, the sensitivity to inhibitors, or the distribution of the TG-sensitive Ca2+ ATPase, and (3) modulating Ca2+ entry pathways.  相似文献   

13.
Vasoconstrictors such as angiotensin II (Ang II) play an important role in the pathogenesis of hypertension. These agonists may be responsible for the abnormal vascular smooth muscle cell (VSMC) growth seen in hypertension, either indirectly as a consequence of elevating blood pressure or directly as a result of receptor-mediated effects on VSMC growth. To investigate whether Ang II might directly initiate or modulate some of the "early" genetic programs associated with growth in VSMC, the expression of the proto-oncogene c-fos was studied in cultured rat aortic VSMC. Ang II rapidly induced the accumulation of c-fos mRNA, with maximal levels occurring at approximately 30 min. Induction of c-fos mRNA by Ang II was concentration-dependent, with a maximal response at 100 nM. Ang II induction of c-fos mRNA was blocked by its competitive inhibitor, [sarcosine 1,isoleucine 8]angiotensin II. Induction of c-fos mRNA was not dependent upon Ang II-stimulated intracellular alkalinization or activation of Na+/H+ exchange, but was dependent upon mobilization of intracellular Ca2+ and protein kinase C activation. Epidermal growth factor, a VSMC mitogen, also induced c-fos mRNA in VSMC, but by a mechanism different from that of Ang II. These results demonstrate that the vasoconstrictor hormone Ang II induces in VSMC one of the earliest genes, c-fos, associated with the proliferative response.  相似文献   

14.
15.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

16.
Role of protein kinase C (PKC) in interleukin (IL) 2-induced proliferation was investigated by utilizing two murine IL 2-dependent cell lines, CT6 and CTLL-2 cell lines. CT6 cells showed a marked proliferative response to phorbol 12-myristate 13-acetate (PMA), while CTLL-2 did not. PMA induced PKC translocation from cytosol to membrane only in a PMA-responsive cell line. IL 2 failed to stimulate PKC translocation in both cell lines. H-7, a potent and specific PKC inhibitor, however, inhibited the proliferation of both cell lines induced by IL 2. Taken collectively, IL 2 may induce PKC activation without its translocation.  相似文献   

17.
D Doerner  B E Alger 《Neuron》1988,1(8):693-699
Cyclic GMP depresses Ba2+ current through high-voltage-activated Ca2+ channels (ICa) in acutely isolated hippocampal neurons. The effect is produced by intra-, but not extracellular, cGMP or by 5' GMP. The membrane-permeant derivative, 8-Br-cGMP, produces a reversible suppression. The effect of 8-Br-cGMP is similar to phorbol ester-induced ICa depression, except that ICa depression due to 8-Br-cGMP is not blocked by protein kinase inhibitors H-8 or H-7, whereas phorbol ester effects are. The data suggest that cGMP depresses ICa by a cGMP-kinase- and protein kinase C (PKC)-independent mechanism. Cyclic AMP, which enhances ICa, and the cyclic nucleotide phosphodiesterase inhibitor, IBMX, both antagonize ICa depression induced by 8-Br-cGMP, but not that due to phorbol esters. Cyclic IMP, a more potent activator of phosphodiesterase than of cGMP-dependent protein kinase, is also a powerful depressant of ICa. We conclude that cGMP-induced depression of ICa is mediated by activation of cyclic nucleotide phosphodiesterase with consequent reduction of intracellular cAMP.  相似文献   

18.
Mucin secretion by airway goblet cells is under the control ofapical P2Y2, phospholipaseC-coupled purinergic receptors. In SPOC1 cells, the mobilization ofintracellular Ca2+ by ionomycin orthe activation of protein kinase C (PKC) by phorbol 12-myristate13-acetate (PMA) stimulates mucin secretion in a fully additive fashion[L. H. Abdullah, J. D. Conway, J. A. Cohn, and C. W. Davis.Am. J. Physiol. 273 (Lung Cell. Mol. Physiol. 17):L201-L210, 1997]. This apparent independence between PKC andCa2+ in the stimulation of mucinsecretion was tested in streptolysin O-permeabilized SPOC1 cells. Thesecells were fully competent to secrete mucin whenCa2+ was elevated from 100 nM to3.1 µM for 2 min following permeabilization; theCa2+EC50 was 2.29 ± 0.07 µM.Permeabilized SPOC1 cells were exposed to PMA or 4-phorbol atCa2+ activities ranging from 10 nMto 10 µM. PMA, but not 4-phorbol, increased mucin release at allCa2+ activities tested: at 10 nMCa2+ mucin release was 2.1-foldgreater than control and at 4.7 µM Ca2+ mucin release was maximal(3.6-fold increase). PMA stimulated 27% more mucin release at 4.7 µMthan at 10 nM Ca2+. Hence, SPOC1cells possess Ca2+-insensitive,PKC-dependent, and Ca2+-dependentPKC-potentiated pathways for mucin granule exocytosis.

  相似文献   

19.
Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca(2+)/Calmodulin-dependent protein kinase kinase (CaMKK), which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO), a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG)-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV) in rats 30 min before 2DG ICV injection (40 μmol) to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol) did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK.  相似文献   

20.
We previously showed that prostaglandin (PG) D2 stimulates Ca2+ influx from extracellular space and activates phosphoinositidic (PI)-hydrolyzing phospholipase C and phosphatidylcholine (PC)-hydrolyzing phospholipase D independently from PGE2 or PGF2alpha in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of PGD2 on the synthesis of interleukin-6 (IL-6) and its regulatory mechanism in MC3T3-E1 cells. PGD2 significantly stimulated IL-6 synthesis dose-dependently in the range between 10 nM and 10 microM. The depletion of extracellular Ca2+ by EGTA reduced the PGD2-induced IL-6 synthesis. TMB-8, an inhibitor of intracellular Ca2+ mobilization, significantly inhibited the PGD2-induced IL-6 synthesis. On the other hand, calphostin C, a specific inhibitor of protein kinase C (PKC), enhanced the synthesis of IL-6 induced by PGD2. In addition, U-73122, an inhibitor of phospholipase C, and propranolol, a phosphatidic acid phosphohydrolase inhibitor, enhanced the PGD2-induced IL-6 synthesis. These results strongly suggest that PGD2 stimulates IL-6 synthesis through intracellular Ca2+ mobilization in osteoblasts, and that the PKC activation by PGD2 itself regulates the over-synthesis of IL-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号