首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的:碱热法和热有机膜法预处理后在镁合金表面仿生制备羟基磷灰石涂层的研究.方法:采用碱热法和热有机膜法对镁合金进行预处理,然后将其浸泡在仿生溶液中制备羟基磷灰石涂层.结果:热有机膜处理后的镁合金,其羟基磷灰石的沉积速度和结晶度都优于碱热法.结论:热有机膜法预处理镁合金能更好的制备羟基磷灰石涂层.  相似文献   

2.
目的:柞蚕丝素(tussah silk fibroin,TSF)和羟基磷灰石(hydroxyapatite,HA)均具有良好的生物活性和生物相容性,是组织工程研究的热点i,但结构单一及微米级的材料所表现出的性能简单,不能满足人们对生物材料支架性能的要求,本课题将两者按不同比例进行复合,探讨不同皮芯比例羟基磷灰石/柞蚕丝素(HA/TSF)的骨仿生纳米纤维的生物学性能。方法:首先利用同轴静电纺丝技术,以TSF水溶液为皮,HA水溶液为芯,制备不同皮芯比例的HA/TSF骨仿生纳米纤维,然后将人成骨肉瘤细胞(MG-63)种植在不同皮芯比例的HA/TSF纳米纤维上。在不同的时间点分别通过倒置显微镜、扫描电镜观察细胞形态学变化;通过四甲基偶氮噻唑蓝比色(Four methyl azo thiazole blue colorimetric, MTT)法、碱性磷酸酶(alkaline phosphatase,ALP)活性检测法观察细胞在材料表面的增殖和分化,从多角度来评价材料的生物学性能。结果:通过形态学观察,SEM观察以及MTT检测,发现除空白对照组外,各组样品均显示良好的生物相容性,均能促进细胞的黏附、增殖,尤以HA/TSF为2:1时最明显;通过MG-63细胞的ALP活性检测,发现当HA/TSF比例为2:1时,最能促进细胞ALP活性的表达,有利于诱导成骨细胞的分化。结论:皮芯结构的HA/TSF骨仿生纳米纤维具有良好的生物学性能,且二者在自然界来源丰富,价格便宜,为临床骨组织缺损修复的应用奠定了一定的实验基础  相似文献   

3.
[目的]引入界面增强剂磺化聚醚醚酮,合成新型聚醚醚酮/磺化聚醚醚酮/羟基磷灰石三元复合材料,研究该材料对成骨细胞MG-63氧化作用影响。[方法]将成骨细胞MG-63和各材料共同培养,测量材料对细胞产生丙二醛和活性氧化自由基水平,通过扫描电镜观察三元复合材料微观结构。[结果]三元复合材料上成骨细胞MG-63产生的丙二醛和活性氧化自由基浓度低于其他材料,HA质量百分比达到30%时,成骨细胞MG-63产生的丙二醛和活性氧化自由基浓度与在模拟人体正常生长条件下的数据接近,统计量P 0. 05,氧化应激作用差异相对不明显,微观下该材料具备类骨的微孔结构和孔隙。[结论]该材料对成骨细胞MG-63氧化作用低于聚醚醚酮/羟基磷灰石材料,类骨的微孔结构能够增加细胞接触面积和有利于营养运输与骨诱导作用。  相似文献   

4.
长骨缺损修复用生物医学材料   总被引:1,自引:0,他引:1  
本文根据天然骨的组织和结构特点,论述了长骨缺损对修复材料的要求,提出了通过材料复合,仿生设计和快速成型制备功能梯度长骨修复材料的方法。  相似文献   

5.
综合运用三维凝胶叠层法和发泡法制备了多孔β-磷酸三钙支架。将多孔支架在1.5倍模拟体液中浸泡14天,得到材料1;或者将其在氢氧化钠溶液中浸泡4天,再在1.5倍模拟体液中浸泡14天,得到材料2。测定了两种材料的物理性能,讨论了类骨磷灰石层对材料矿物组成及其显微结构等的影响。将两组材料分别与成骨前体细胞在体外复合培养,观察和测定了细胞的形态和增殖情况。结果表明复合材料的主要成分为β-磷酸三钙,表面具有结构不完整的含有碳酸磷灰石的类骨磷灰石,成骨细胞能在两组材料上正常粘附和增殖,而且材料2上的细胞粘附情况更好,说明多孔β-磷酸三钙与磷灰石的复合材料有望成为一种有应用前景的骨修复材料和骨组织工程支架材料。  相似文献   

6.
目的:磷酸钙骨水泥(Calcium phosphate cement,CPC)以其诸多优点正得到了越来越多的应用,但其较差的力学性能表现也限制了它的使用范围。本研究目的在于改善磷酸钙骨水泥的力学性能,同时评估改性后的磷酸钙骨水泥的其他性能。方法:通过丝素蛋白(Silk fibroin,SF)的矿化自组装方法制备丝素蛋白/羟基磷灰石复合物(silk fibroin/hydroxyapitite composite, SF/HA)。按照1%、2%、3%、4%的质量分数加入磷酸钙骨水泥中,与磷酸钙骨水泥组对比。比较内容包括力学强度、抗渍散性能及细胞毒性。结果:以丝素蛋白溶液为液相组的磷酸钙骨水泥强度大约为35MPa。随后随着添加丝素蛋白/羟基磷灰石复合物的质量分数从1%增至3%,磷酸钙骨水泥的强度逐渐增加(P〈0.05),最高约至45MPa。而当丝素蛋白/羟基磷灰石的质量分数达到4%时,磷酸钙骨水泥的强度较质量分数3%组小幅度下降至43MPa(P〈0.05)。以丝素蛋白溶液作为液相时,磷酸钙骨水泥的抗溃散能力也得到了加强。在MTT法测定细胞活力的对照实验中,无论是加入丝素蛋白溶液或丝素蛋白/羟基磷灰石复合物,都未观察到细胞毒性。结论:在磷酸钙骨水泥中加入3%质量分数的丝素蛋白/羟基磷灰石复合物,能显著提高磷酸钙骨水泥的抗压强度。而丝素蛋白溶液作为液相可改善磷酸钙骨水泥的抗溃散能力。同时,丝素蛋白和丝素蛋白/羟基磷灰石复合物都不表现出细胞毒性。更理想的力学强度和更强的抗溃散能力,大大扩展了磷酸钙骨水泥的应用范围。  相似文献   

7.
目的:考察载溶菌酶的羟基磷灰石/壳聚糖(HA/CS)复合骨填充材料的体外释放规律。方法:制备载不同剂量溶菌酶的骨填充材料小柱,于37℃模拟体液下释放,高效液相测定药物释放情况。结果:在释放初期有突释效应,释放周期为3周,释放曲线符合Weibull方程,释放百分比与载药量有关。结论:HA/CS复合骨填充材料对溶菌酶有缓释效果,具有一定的临床使用前景。  相似文献   

8.
纳米羟基磷灰石/胶原复合材料制备方法研究   总被引:9,自引:0,他引:9  
研究了在脱钙骨基质内原位沉积纳米羟基磷灰石的电化学方法,探讨了影响沉积的实验因素和条件.并利用红外光谱和X衍射表征无机相的组成,透射电子显微镜观测晶体的形态和尺寸,光学显微镜观察无机相分布,灰化法测定无机成分含量.结果表明,电化学方法可以制备出纳米羟基磷灰石/胶原复合材料,其无机成分为53 9±3.2%,并且无机相的组成、分布、性质与自然骨非常一致,是纳米复合材料.  相似文献   

9.
目的:初步探索胶原膜与羟基磷灰石在治疗牙周牙髓联合病变中牙槽骨缺损的作用。方法:患牙进行根管治疗,调颌及牙周翻瓣术。其中21例患牙的牙周骨缺损区植入胶原膜和羟基磷灰石;20例以传统血充盈法关闭骨腔。二组患牙于治疗后1、3、6、12、24个月分别进行随访;结果:提示应用胶原膜和羟基磷灰石组的疗效明显优于对照组,并有统计学上差异。结论:胶原膜加羟基磷灰石治疗牙周牙髓联合病变的方法值得提倡。  相似文献   

10.
骨组织工程天然衍生细胞外基质材料   总被引:10,自引:0,他引:10  
细胞外基质材料的开发是骨组织工程的重要组成部分,目前,在骨组织工程中应用较多的基质材料可分为天然衍生材料、人工合成材料以及这两种材料的复合材料。介绍了各种天然衍生骨材料如煅烧骨、脱钙骨基质、脱蛋白骨基质、重组合异种骨基质和天然高分子材料如胶原、纤维蛋白、几丁质、藻酸盐及其衍生物以及珊瑚衍生骨在骨组织工程中的应用,展望了骨组织工程细胞外基质材料的未来发展方向,认为未来的理想基质材料应该是集各种材料的优点于一身,能够充分适应体内各种生理环境并能采用智能化的加工方式进行大批量生产的生物仿生材料。  相似文献   

11.
The objective of this study is to evaluate the in vitro and in vivo osteogenic potential of rat bone marrow mesenchymal stem cells (BM-MSCs) using chitosan/hydroxyapatite (C/HAp) microbeads as encapsulation matrix under osteoinductive medium and dynamic culture conditions. The degradation characteristics of C/HAp microbeads were evaluated under in vitro and in vivo conditions for 180 days. BM-MSCs were encapsulated in C/HAp microbeads with >?85% viability, and were cultured in a slow turning lateral vessel-type rotating bioreactor simulating microgravity conditions for 28 days, under the effect of osteogenic inducers. MTT assay showed that the metabolic activity of encapsulated cells was preserved >?80% after a week. In vitro experiments confirmed that the encapsulated BM-MSCs differentiated into osteoblastic cells, formed bone-like tissue under osteogenic microgravity bioreactor conditions. Preliminary in vivo study indicated C/HAp microbeads containing BM-MSCs were able to repair the surgically-created small bone defects in the rat femur. BM-MSCs-C/HAp composite microbeads may have potential for modular bone regeneration.  相似文献   

12.
Contemporary treatment of critical bone defect remains a significant challenge in the field of orthopedic surgery. Engineered biomaterials combined with growth factors have emerged as a new treatment alternative in bone repair and regeneration. Our approach is to encapsulate bone morphogenetic protein-2 (BMP-2) into a polymeric matrix in different ways and characterize their individual performance in a nude mouse model. The main objective of this study is to examine whether the PLGA/HAp composite fibrous scaffolds loaded with BMP-2 through electrospinning can improve bone regeneration. The hypothesis is that different loading methods of BMP-2 and different HAp contents in scaffolds can alternate the release profiles of BMP-2 in vivo, therefore modify the performance of scaffolds in bone regeneration. Firstly, mechanical strength of scaffolds and HAp nanoparticles distribution in scaffolds were investigated. Secondly, nude mice experiments extended to 6 weeks were carried out to test the in vivo performance of these scaffolds, in which measurements, like serum BMP-2 concentration, ALP activity, X-ray qualification, and H&E/IHC tissue staining were utilized to monitor the growth of new bone and the changes of the corresponding biochemical parameters. The results showed that the PLGA/HAp composite scaffolds developed in this study exhibited good morphology/mechanical strength and HAp nanoparticles were homogeneously dispersed inside PLGA matrix. Results from the animal experiments indicate that the bioactivity of BMP-2 released from the fibrous PLGA/HAp composite scaffolds is well maintained, which further improves the formation of new bone and the healing of segmental defects in vivo. It is concluded that BMP-2 loaded PLGA/HAp composite scaffolds are promising for bone healing.  相似文献   

13.
The transition in the field of bone tissue engineering from bone regeneration to in vitro models has come with the challenge of recreating a dense and anisotropic bone-like extracellular matrix (ECM). Although the mechanism by which bone ECM gains its structure is not fully understood, mechanical loading and curvature have been identified as potential contributors. Here, guided by computational simulations, we evaluated cell and bone-like tissue growth and organization in a concave channel with and without directional fluid flow stimulation. Human mesenchymal stromal cells were seeded on donut-shaped silk fibroin scaffolds and osteogenically stimulated for 42 days statically or in a flow perfusion bioreactor. After 14, 28, and 42 days, constructs were investigated for cell and tissue growth and organization. As a result, directional fluid flow was able to improve organic tissue growth but not organization. Cells tended to orient in the tangential direction of the channel, possibly attributed to its curvature. Based on our results, we suggest that organic ECM production but not anisotropy can be stimulated through the application of fluid flow. With this study, an initial attempt in three-dimensions was made to improve the resemblance of in vitro produced bone-like ECM to the physiological bone ECM.  相似文献   

14.
The bone-seeking radiopharmaceutical Xofigo (Radium-223 dichloride) has demonstrated both extended survival and palliative effects in treatment of bone metastases in prostate cancer. The alpha-particle emitter Ra-223, targets regions undergoing active bone remodeling and strongly binds to bone hydroxyapatite (HAp). However, the toxicity mechanism and properties of Ra-223 binding to hydroxyapatite are not fully understood. By exposing 2D and 3D (spheroid) prostate cancer cell models to free and HAp-bound Ra-223 we here studied cell toxicity, apoptosis and formation and repair of DNA double-strand breaks (DSBs). The rapid binding with a high affinity of Ra-223 to bone-like HAp structures was evident (KD= 19.2 × 10−18 M) and almost no dissociation was detected within 24 h. Importantly, there was no significant uptake of Ra-223 in cells. The Ra-223 alpha-particle decay produced track-like distributions of the DNA damage response proteins 53BP1 and ɣH2AX induced high amounts of clustered DSBs in prostate cancer cells and activated DSB repair through non-homologous end-joining (NHEJ). Ra-223 inhibited growth of prostate cancer cells, independent of cell type, and induced high levels of apoptosis. In summary, we suggest the high cell killing efficacy of the Ra-223 was attributed to the clustered DNA damaged sites induced by α-particles.  相似文献   

15.
Chitosan, a deacetylated derivative of chitin is a commonly studied biomaterial for tissue-engineering applications due to its biocompatibility, biodegradability, low toxicity, antibacterial activity, wound healing ability and haemostatic properties. However, chitosan has poor mechanical strength due to which its applications in orthopedics are limited. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has mechanical strength and osteoconductive property. In this work, HAp was deposited on the surface of chitosan hydrogel membranes by a wet chemical synthesis method by alternatively soaking the membranes in CaCl2 (pH 7.4) and Na2HPO4 solutions for different time intervals. These chitosan hydrogel–HAp membranes were characterized using SEM, AFM, EDS, FT-IR and XRD analyses. MTT assay was done to evaluate the biocompatibility of these membranes using MG-63 osteosarcoma cells. The biocompatibility studies suggest that chitosan hydrogel–HAp composite membranes can be useful for tissue-engineering applications.  相似文献   

16.
Differentiated osteoblasts are polarized in regions of bone deposition, demonstrate extensive cell interaction and communication, and are responsible for bone formation and quality. Type XII collagen is a fibril-associated collagen with interrupted triple helices and has been implicated in the osteoblast response to mechanical forces. Type XII collagen is expressed by osteoblasts and localizes to areas of bone formation. A transgenic mouse null for type XII collagen exhibits skeletal abnormalities including shorter, more slender long bones with decreased mechanical strength as well as altered vertebrae structure compared with wild-type mice. Col12a(-/-) osteoblasts have decreased bone matrix deposition with delayed maturation indicated by decreased bone matrix protein expression. Compared with controls, Col12a(-/-) osteoblasts are disorganized and less polarized with disrupted cell-cell interactions, decreased connexin43 expression, and impaired gap junction function. The data demonstrate important regulatory roles for type XII collagen in osteoblast differentiation and bone matrix formation.  相似文献   

17.
18.
Force constant values for thermal vibrational motion of a collagen molecule along the helix axis in tendon, completely demineralized bone (CDB), and partially demineralized bone (PDB) were estimated by determining the Debye–Waller factor (DW factor) for the diffracted X-ray intensity from these specimens. The DW factor for nominal value of 0.286 nm meridional diffraction representing a period along the helical axis of a collagen molecule was measured. As the atomic scattering factor of mineral constituents is much larger than that of collagen, it is difficult to detect the diffraction from collagen in bone specimen. Therefore, PDB was used in this study. In order to compare obtained force constant value for CDB with mechanical properties of collagen in the literature, the value was translated into Young's modulus value using the cross-sectional area of a collagen molecule. In the case of collagen in PDB, i.e., collagen with the close presence of HAp mineral particles, as the DW factor of the diffracted intensity by hydroxyapatite (HAp) was considered to be negligible compared with that of collagen, the DW factor determined was interpreted as that of collagen molecule in PDB specimen. The force constant value obtained for collagen in PDB was significantly larger than that of collagen in CDB. This result was thought to be a manifestation of the hardening of collagen matrix in bone by HAp mineral particles and the first straightforward evidence for a difference in collagen properties depending on the presence of HAp mineral particles. The method employed in this study can be utilized for detecting mechanical properties of the individual constituents of composite materials.  相似文献   

19.
ObjectivesLarge bone defects are a common, debilitating clinical condition that have substantial global health and economic burden. Bone tissue engineering technology has become one of the most promising approaches for regenerating defective bones. In this study, we fabricated a naringin‐inlaid composite silk fibroin/hydroxyapatite (NG/SF/HAp) scaffold to repair bone defects.Materials and MethodsThe salt‐leaching technology was used to fabricate the NG/SF/HAp scaffold. The cytocompatibility of the NG/SF/HAp scaffold was assessed using scanning electron microscopy, live/dead cell staining and phalloidin staining. The osteogenic and angiogenic properties were assessed in vitro and in vivo.ResultsThe porous NG/SF/HAp scaffold had a well‐designed biomimetic porous structure with osteoinductive and angiogenic activities. A gene microarray identified 854 differentially expressed genes between human umbilical cord‐derived mesenchymal stem cells (hUCMSCs) cultured on SF‐nHAp scaffolds and cells cultured on NG/SF/HAp scaffolds. The underlying osteoblastic mechanism was investigated using hUCMSCs in vitro. Naringin facilitated hUCMSC ingrowth into the SF/HAp scaffold and promoted osteogenic differentiation. The osteogenic and angiogenic capabilities of cells cultured in the NG/SF/HAp scaffold were superior to those of cells cultured in the SF/HAp scaffold.ConclusionsThe data indicate the potential of the SF/HAp composite scaffold incorporating naringin for bone regeneration.  相似文献   

20.
It is commonly accepted that silicon-doped hydroxyapatite (HAp) can achieve good repair effects for both spinal fusion and bone defect filling. However, the underlying mechanism by which silicon aids such beneficial effects is still not fully understood. Herein, we report on silicon-doped hydroxyapatites with excellent biocompatibility to osteoblast cells and suggest the signaling pathway involved. Non-doped HAp and trace Si-doped HAp (Si/HAp) with Si concentration close to and higher than natural bones were synthesized (i.e., 32, 260, and 2000 ppm Si). The composition, crystal lattice vibration pattern, and morphology of these samples are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and SEM, respectively. Positive biological activities of these Si-doped HAp materials were demonstrated through a cytotoxicity study and with the MTT and alkaline phosphatase (ALP) activity assays. The Si-doped samples were not toxic to MC3T3-E1 cells. Indeed, osteoblast proliferation measurement illustrated that 2000 ppm Si-doped HAp increased osteoblast proliferation by about 1.6 times compared to non-doped HAp. The ALP assay also proves that the trace Si doping has the function to enhance cell proliferation and differentiation. The ALP assay showed that Si doping also enhanced cell differentiation. QRT-PCR results revealed that Si-doped HAp enhanced osteogenic differentiation of osteoblast cells by upregulating genes such as MAPK3, Fzd1, Wnt1, Lrp6, and BMP2. In conclusion, Si-doped HAp promotes osteoblast proliferation and differentiation by activating the Wnt/β-catenin and MAPK signaling pathways. This work could provide useful information of the beneficial effects of silicon in human bones and provide clues as to the molecular mechanism of the promotive effect of Si-doped HAp biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号