首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Storage of energy metabolites has been investigated in different sets of laboratory selected desiccation or starvation resistant lines but few studies have examined such changes in wild-caught populations of Drosophila melanogaster. In contrast to parallel selection of desiccation and starvation tolerance under laboratory selection experiments, opposite clines were observed in wild populations of D. melanogaster. If resistance to desiccation and starvation occurs in opposite directions under field conditions, we may expect a trade-off for energy metabolites but such correlated changes are largely unknown. We tested whether there is a trade-off for storage as well as actual utilization of carbohydrates (trehalose and glycogen), lipids and proteins in D. melanogaster populations collected from different altitudes (512-2500 m). For desiccation resistance, darker flies (> 50% body melanization) store more body water content and endure greater loss of water (higher dehydration tolerance) as compared to lighter flies (< 30% body melanization). Based on within population analysis, we found evidence for coadapted phenotypes i.e. darker flies store and actually utilize more carbohydrates to confer greater desiccation resistance. In contrast, higher starvation resistance in lighter flies is associated with storage and actual utilization of greater lipid amount. However, darker and lighter flies did not vary in the rate of utilization of carbohydrates under desiccation stress; and of lipids under starvation stress. Thus, we did not find support for the hypothesis that a lower rate of utilization of energy metabolites may contribute to greater stress resistance. Further, for increased desiccation resistance of darker flies, about two-third of total energy budget is provided by carbohydrates. By contrast, lighter flies derive about 66% of total energy content from lipids which sustain higher starvation tolerance. Our results support evolutionary trade-off for storage as well as utilization of energy metabolites for desiccation versus starvation resistance in D. melanogaster.  相似文献   

2.
In D. melanogaster, resistance to starvation and desiccation vary in opposite directions across a geographical gradient in India but there is lack of such clinal variation on other continents. However, it is not clear whether these resistance traits or other correlated traits are the target of natural selection. For resistance to starvation or desiccation in D. melanogaster, we tested the hypothesis whether body color phenotypes and energy metabolites show correlated selection response. Our results are interesting in several respects. First, based on within population analysis, assorted darker and lighter flies from a given population showed that darker flies store higher amount of trehalose and confer greater desiccation resistance as compared with lighter flies. By contrast, lighter flies store higher lipids content and confer increased starvation tolerance. Thus, there is a trade-off for energy metabolites as well as body color phenotypes for starvation and desiccation stress. Further, trait associations within populations reflect similar patterns in geographical populations. Second, we found opposite clines for trehalose and body lipids. Third, coadapated phenotypes have evolved under contrasting climatic conditions i.e. drier and colder northern localities select darker flies with higher trehalose as well as desiccation resistance while hot and humid localities favor lighter flies with higher lipids level and greater starvation tolerance. Thus, the evolution of coadapated phenotypes associated with starvation and desiccation resistance might have resulted due to specific ecological conditions i.e. humidity changes on the Indian subcontinent.  相似文献   

3.
In previous experiments we found that Drosophila melanogaster lines selected for increased adult desiccation resistance had increased resistance to other environmental stresses at the adult stage including starvation, intense 60Co-γ radiation and a toxic ethanol level. In further studies on these lines, we now show that selection did not alter resistance to desiccation and ethanol at the larval stage. As well as having a lower early fecundity, selected lines showed increased adult male longevity and increased viability at high larval densities compared with control lines. There were no changes in development time or mating success. The increased male longevity is consistent with the reduced metabolic rate of the selected lines.
A genetic correlation between resistance to different stresses was confirmed by an analysis of isofemale lines derived from a population founded by flies from a stress-resistant line and an unselected line. The results are consistent with the existence of genes segregating in natural populations conferring increased general stress resistance.  相似文献   

4.
Wild caught samples of Drosophila melanogaster from five highland localities showed parallel changes in melanisation and desiccation resistance in darker versus lighter phenotypes, i.e. darker flies (>45% melanisation) showed significantly higher desiccation resistance than lighter flies (<30% melanisation). In order to find an association between body melanisation and desiccation resistance, highland and lowland populations from tropical and subtropical regions (11.15-31.06 degrees N) of the Indian subcontinent were raised and investigated at 21 degrees C for four physiological traits, i.e. per cent body melanisation, desiccation resistance, rate of water loss and rate of water absorption. On the basis of mother-offspring regression, body melanisation and desiccation resistance showed higher heritability (0.58-0.68) and thus these traits are suitable for laboratory analyses. Significantly higher melanisation as well as desiccation resistance were observed in highland populations as compared with lowland populations. The rates of water loss as well as absorption were negatively correlated with body melanisation, i.e. darker flies from highlands showed a reduced rate of water loss as well as a lower rate of water absorption while the reverse trend was observed in lighter flies from lowlands. On the basis of multiple regressions, significant effects due to combined altitude and latitude were observed for all the four physiological traits. Local climatic conditions (i.e. annual average temperature and relative humidity) helped in explaining parallel changes in body melanisation and desiccation resistance in D. melanogaster.  相似文献   

5.
Clines for size and stress resistance traits have been described for several Drosophila species and replicable clines across different species may indicate climatic selection. Here we consider clines in stress resistance traits in an Australian endemic species, D. serrata, by comparing levels of variation within and among isofemale lines initiated with flies collected from the eastern coast of Australia. We also consider clinical variation in chill coma recovery, a trait that has recently been shown to exhibit high levels of variation among Drosophila species. Patterns were compared with those in the cosmopolitan species D. melanogaster from the same area. Both desiccation and starvation resistance showed no clinical pattern despite heritable variation among isofemale lines. In contrast chill coma resistance exhibited a linear cline in the anticipated direction, resistance increasing with latitude. Body size was measured as wing length and body weight. Both traits showed geographic variation and strong non-linear clines with a sharp reduction in size in the tropics. These results are discussed in the context of climatic selection and evolutionary processes limiting species borders.  相似文献   

6.
Abstract In natural populations, organisms experience simultaneously biotic (e.g., competitors and parasites) and abiotic (e.g., temperature and humidity) stresses. Thus, species must have the capacity to respond to combinations of stressors. How does interaction between biotic and abiotic stress affect organismal performance? To address this question, I studied stress resistance of adult Drosophila melanogaster that survived parasitic attack (as larvae) by the parasitoid Asobara tabida. To determine the impact of genotype on stress resistance, I measured survival under desiccation and starvation of flies within isofemale (genetic) lines. Survivors of parasitism had slightly reduced survivorship compared to unparasitized relatives when both were unstressed, and this difference was exacerbated by desiccation and starvation. These results indicate multiple stressors can compound each other's individual negative effects on fitness. Moreover, isofemale lines differed in their sensitivity to environmental stress and to parasitism. Consequently, genotypic differences in sensitivity to stress may reflect differences in investment priorities between traits that promote survival over other life‐history characters.  相似文献   

7.
In insects changes in lipid metabolism may underlie a trade-off between cold resistance and starvation resistance. To test this we examined correlated responses in independent sets of Drosophila melanogaster lines selected for increased cold resistance and increased starvation resistance. The starvation lines showed correlated patterns found in other D. melanogaster populations selected for this trait, including higher lipid levels and increased resistance to desiccation, although the selected lines did not show a longer development time as found in some other studies. Consistent with the trade-off hypothesis, selected lines with increased starvation resistance showed decreased resistance to a cold stress as measured by mortality, whereas selected lines with increased cold resistance showed a decrease in starvation resistance. To counter the possibility of inadvertent selection accounting for these patterns, selected and control lines from both selection regimes were crossed to form mass bred populations, which were left for four generations prior to establishing isofemale lines. By scoring starvation and cold resistance in these lines derived from both sets of selection regimes, we confirmed the negative association between resistance to these stresses in females but not in males. Potential implications of this trade-off for surviving cold conditions when food resources are limiting are discussed.  相似文献   

8.
Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, 60Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock.  相似文献   

9.
《Fly》2013,7(3):111-117
We investigated population divergence in body melanisation in wild samples of Drosophila melanogaster across an elevational gradient (512 - 2202m) in the Western Himalayas. Wild populations are characterized by higher phenotypic variability as compared with laboratory populations. Significant differences in elevational slope values for three posterior abdominal segments (5th, 6th and 7th) in wild versus laboratory populations suggest plastic effects. However, elevational slope values do not differ for the three anterior abdominal segments (2nd, 3rd and 4th). Thus, elevational changes in melanisation include genetic as well as plastic effects. Fitness consequences of within population variability were analyzed on the basis of assorted darker and lighter flies from two highland as well as from two lowland localities. There is lack of correlation of melanisation with body size as well as ovariole number in assorted darker and lighter flies. For each population, darker flies showed higher desiccation resistance, lower rate of water loss, longer copulation duration and greater fecundity as compared with lighter flies. Phenotypic variations in body melanisation can be interpreted in relation with seasonal changes in temperature as well as humidity (Tcv and RHcv) of the sites of origin of populations. Thus, elevational changes in body melanisation may represent genetic response to selection pressures imposed by colder and drier climatic conditions in the Western Himalayas.  相似文献   

10.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including stimulation of pheromone biosynthesis in female moths, stimulation of muscle contraction, induction of embryonic diapause in Bombyx mori, and stimulation of melanization in some larval moths. Recently, this family of peptides has been implicated in accelerating the formation of the puparium in a dipteran. Using bioassay and immunocytochemical techniques, we demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Pheromonotropic activity was shown in the moths Helicoverpa zeaand Helicoverpa armigera by using dissected larval nervous systems and adult heads and bodies of D. melanogaster. Polyclonal antisera against the C-terminal ending of PBAN revealed the location of cell bodies and axons in the central nervous systems of larval and adult flies. Immunoreactive material was detected in at least three groups of neurons in the subesophageal ganglion of 3rd instar larvae, pupae, and adults. The ring gland of both larvae and adults contained immunoreactivity. Adult brain-subesophageal ganglion complex possessed additional neurons. The fused ventral ganglia of both larvae and adults contained three pairs of neurons that sent their axons to a neurohemal organ connected to the abdominal nervous system. These results indicate that the D. melanogasternervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph.  相似文献   

11.
The sibling species Drosophila melanogaster and D. simulans were collected at Laguna Verde, Veracruz, Mexico. D. melanogaster was found in significantly greater frequency than was D. simulans. Ten isofemale lines of each species were tested for egg to adult viability, desiccation resistance, and vagility. D. melanogaster surpassed D. simulans in all three characteristics. The findings are discussed with reference to the climatic conditions at Laguna Verde and the expected effect of such an environment on the relative frequencies of these species. The dichotomous results in regard to desiccation resistance and vagility that were observed between recently collected D. melanogaster and the Oregon-R laboratory stock of that species are also discussed.  相似文献   

12.
Proteolytic enzyme biosynthesis in the midgut of the 4th instar larva of Heliothis virescens is cyclical. Protease activity increases immediately after the molt from the 3rd to the 4th instar larvae and declines just before the molt into the 5th instar. Characterization of the midgut proteases using soybean tryspin inhibitor (SBTI) Bowman Birk Inhibitor (BBI) 4-(2-aminoethyl)benzensulfonylfluoride (AEBSF) and N-tosyl-L-phenylalanine chloromethylketone (TPCK) indicate that protease activity is mostly trypsinlike (80%) with a small amount of chymotrypsinlike activity (20%). Injections of late 3rd and 4th instar larval hemolymph into H. virescens larvae inhibited tryspin biosynthesis in the larval midgut. Similar results were obtained when highly purified 4th instar larval hemolymph that crossreacted with Aea-TMOF antisurm using ELISA was injected into 2nd instar larvae. Injections of Aea-TMOF and its analogues into 2nd instar, and Aea-TMOF alone into 4th instar larvae stopped trypsin biosynthesis 24 and 48 h after the injections, respectively. Injections of 4th instar H. virescens larval hemolymph into female Aedes aegypti that took a blood meal stopped trypsin biosynthesis and egg development. These results show that the biosynthesis of trypsin-like enzymes in the midgut of a lepidoptera is modulated with a hemolymph circulating TMOF-like factor that is closely related to Aea-TMOF. Arch.  相似文献   

13.
The stage-dependent effects of starvation on the growth, metamorphosis, and ecdysteroidogenesis of the prothoracic glands during the last larval instar of the silkworm, Bombyx mori, were studied in the present study. When last instar larvae were starved beginning on day 1 of that instar, all larvae died between days 5 and 7 of the instar. Although the prothoracicotropic hormone (PTTH) release from the brain-corpus cardiacum-corpus allatum (BR-CC-CA) did not significantly change during starvation, a deficiency in PTTH signal transduction was maintained, which led to very low levels of hemolymph ecdysteroids after the beginning of starvation. However, when starvation began on day 3 of the last larval instar, the major hemolymph ecdysteroid peak, preceding larval-pupal transformation, occurred 1 day earlier than that in control larvae. Protein content of the prothoracic glands in day 3-starved larvae was maintained at a low level as compared to that of control larvae. The secretory activity of the prothoracic glands in day 3-starved larvae was maintained at a level similar to that of control larvae. However, the rate of ecdysteroidogenesis, expressed per microgram of glandular protein, was greatly enhanced in these starved larvae, indicating that upon starvation, larvae increased the ecdysteroid production rate to enhance the rate of survival.  相似文献   

14.
Three populations of Drosophila pseudoobscura, each one represented by 12 isofemale lines, and one laboratory strain of D. melanogaster were tested for desiccation resistance at two time periods. Except in the case of one population of D. pseudoobscura, the ability to withstand drying was significantly greater in females than in the corresponding males. The males of the three populations of D. pseudoobscura differed significantly among themselves in their resistance to desiccation, as did the females. The females of D. melanogaster exhibited a consistently higher survival rate than those of D. pseudoobscura, but not the males. These results are discussed with reference to the third chromosome inversion polymorphism of D. pseudoobscura and the cosmopolitan distribution of D. melanogaster.  相似文献   

15.
Mutagenesis provides a powerful way of isolating genetic and physiological processes underlying complex traits, but this approach has rarely been applied to investigating water balance in insects. Here, we describe the isolation of a desiccation-resistant mutant of Drosophila melanogaster. Mutagenesis of a desiccation sensitive line resulted in the isolation of a mutant with two-fold higher resistance. The mutant was partially dominant and mapped to the second chromosome. Mutant flies showed lower rates of water loss, and had a higher water content, but showed no change in body mass, glycogen content, hemolymph volume or water content tolerated at death from desiccation. These physiological differences are contrasted to changes in lines of D. melanogaster mass selected for altered stress resistance. Isolation of this mutant provides an opportunity to identify a gene involved in water balance in insects.  相似文献   

16.
Application of methoprene to fourth (penultimate) instar larvae of the silkworm Bombyx mori induced the appearance of the feeding dauer larvae at the fifth (last) instar and prevented pupal metamorphosis. Methoprene also increased the protein concentrations of hemolymph last instar larvae by preventing sequestration of storage proteins by the fat body. Usually, the female-specific storage protein 1 (SP1)* disappears from the male hemolymph at the time of the last larval instar. However, exposure of male larvae to methoprene at the penultimate instar enhanced the accumulation of SP1 in the hemolymph. The SP1 accumulated in males did not differ in molecular weight and immunoreactivity from the SP1 produced in female larvae. Both sexes of fourth instar larvae allatectomized on day 1 instantly accumulated SP1 in the hemolymph, and methoprene application after allatectomy suppressed the hemolymph accumulation of the SP1. In contrast, if allatectomy was carried out at a later stage of the fourth larval instar, SP1 concentration in hemolymph of fifth instar larvae did not increase, suggesting the different juvenile hormone action for regulation of SP1 synthesis in the penultimate instar larvae of silkworms.  相似文献   

17.
Activation of DNA synthesis in prothoracic gland cells of the silkworm, Bombyx mori, during the middle stages of the last larval instar appears to be nutrition dependent, with starvation on day 3 of the last larval instar inhibiting its dramatic increase. The possible cellular mechanism causing the inhibition of DNA synthesis owing to starvation was further examined by determining changes in the growth-promoting activity of the hemolymph and the responsiveness of gland cells to starvation. The results showed that on starvation, the activity of the growth-promoting factor in the hemolymph did not greatly decrease until 2 days after starvation had begun. However, the dramatic increase in the responsiveness of gland cells (the ability to synthesize DNA when exposed to the hemolymph growth factor), which normally occurs on day 4 of the last instar, was not observed when starvation was begun on day 3. A dramatic increase in gland cell size was observed in control larvae during later stages of the last larval instar. However, with starvation beginning on day 3, gland cell size was maintained at lower levels compared with those of control larvae, indicating that the inhibition of DNA synthesis is indeed related to the inhibition of cell size. From these results, it was assumed that alterations in growth factor receptors and downstream signaling may be related to the inhibition of DNA synthesis by starvation and that the deficiency in growth-promoting factor signaling may guarantee that the growth of endoreplicative tissues in these larvae ceases.  相似文献   

18.
The larval serum proteins, LSP1 and LSP2, of Drosophila melanogaster are synthesized by the fat body during the third instar. We examined the potential for LSP synthesis by fat body implants in adult flies. Fat body from third instar donors will continue to synthesize LSPs in both males and females. Implants from late second instar larvae will start synthesizing LSP1 and LSP2 in females but only LSP1 in males, suggesting that regulation of these proteins is not the same and that the physiological milieu in the two sexes differs. The newly synthesized LSPs are secreted into the hemolymph for approximately 48 hr when secretion stops but synthesis continues. This sequence follows the pattern for LSP secretion in situ. Fat body from mid second instar larvae is variable in its ability to synthesize LSPs. LSPs are not detected in implants from first instar larvae despite there being a high level of protein synthesis in the implant and considerable growth of the fat body cells. We conclude that there is a critical stage of differentiation during the latter half of the second instar when the fat body becomes independent of the larval milieu and can synthesize LSPs in the adult.  相似文献   

19.
Suitable alterations in gene expression are believed to allow animals to survive drastic changes in environmental conditions. Drosophila melanogaster larvae cease eating and exit moist food to search for dry pupation sites after the foraging stage in what is known as the wandering stage. Although the behavioral change from foraging to wandering causes desiccation stress, the mechanism by which Drosophila larvae protect themselves from desiccation remains obscure. Here, we identified a gene, CG14686 (designated as Desiccate (Desi)), whose expression was elevated during the wandering stage. The Desi expression level was reversibly decreased by transferring wandering larvae to wet conditions and increased again by transferring them to dry conditions. Elevation of Desi expression was also observed in foraging larvae when they were placed in dry conditions. Desi encoded a 261-amino acid single-pass transmembrane protein with notable motifs, such as SH2 and PDZ domain-binding motifs and a cAMP-dependent protein kinase phosphorylation motif, in the cytoplasmic region, and its expression was observed mainly in the epidermal cells of the larval integuments. Overexpression of Desi slightly increased the larval resistance to desiccation stress during the second instar. Furthermore, Desi RNAi larvae lost more weight under dry conditions, and subsequently, their mortalities significantly increased compared with control larvae. Under dry conditions, consumption of carbohydrate was much higher in Desi RNAi larvae than control larvae. Based on these results, it is reasonable to conclude that Desi contributes to the resistance of Drosophila larvae to desiccation stress.  相似文献   

20.
孙虹霞  夏嫱  唐文成  张古忍  党志 《生态学报》2010,30(12):3239-3246
研究了饲料中不同浓度的Ni2+(140mg/kg)对连续3个世代斜纹夜蛾Spodoptera litura Fabricius6龄末幼虫、蛹和成虫血淋巴中能量物质总糖、蛋白质和脂肪含量及血淋巴中热量值的影响。结果表明,Ni2+胁迫1个世代,6龄末幼虫、蛹和成虫血淋巴中的总糖含量均低于对照,而血淋巴中的蛋白质含量则在低浓度Ni2+胁迫下增高,在高浓度Ni2+胁迫下降低;只有受120mg/kg Ni2+胁迫的6龄末幼虫血淋巴的脂肪含量高于对照,而蛹和成虫血淋巴中的脂肪含量及热量值均低于对照。在Ni2+胁迫的第2、3代,6龄末幼虫、蛹和成虫血淋巴中的总糖、蛋白含量和热量值与饲料中Ni2+浓度的反应关系均表现为低浓度Ni2+胁迫增加而高浓度Ni2+胁迫降低的趋势;然而,血淋巴中的脂肪含量随饲料中Ni2+浓度的增加而降低。因此,重金属Ni2+对S.litura能量物质的影响与虫体内能量物质的种类和虫体的发育阶段有一定的关联。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号