首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
We report the results of the performance of 20 exchange–correlation functionals of density functional theory (DFT) in the structure (Metal–Oxygen bond length) and energetical properties (bond dissociation energy, adiabatic ionisation energy, and adiabatic electron affinity) of twelve metal monoxides (M–O, M=Al, Si, Sc–Zn). The calculated results show that the selected DFT functionals have the ability to reproduce the M–O bond length with a mean deviation of 0.01–0.05 Å, the energy values are reproduced with a mean deviation of 0.20–1.00?eV. In general, the functionals with significant HF exchange show decent performance in the calculation of bond length and harmonic vibrational frequency. These functionals show poor performance in energetics. Our calculated results show that the M06-L, B3LYP, and TPSSh functionals give good performance in both structure and energetical properties of metal monoxides. These functionals are recommended for the studies of structure and energetics in metal oxide systems. Further, our studies indicate that M06-L can be used for the studies in larger molecular systems. Among the 20 DFT functionals, the recently developed N12 functional gives poor performance in the studies of metal monoxides. Hence this functional is not recommended for the studies of structure and energetics in metal oxide systems.  相似文献   

3.
《Inorganica chimica acta》1986,114(2):123-125
Owing to its relatively high basicity (pKa1 = 3.37), the title ligand yields M(CO)4 chelate complexes (M = Cr, Mo, W) which have both metal-to-ligand charge transfer absorption maxima at longer wavelengths than corresponding 2,2′-bipyrimidine and 2,2′-bipyrazine compounds. After 4,4′-bipyrimidine, 3,3′-bipyridazine is the second-best π acceptor among the symmetrical bidiazines with α-diimine structure.  相似文献   

4.
The bis(heptalene)dimetal complexes (C12H10)2M2 of the first row transition metals from Ti to Ni are predicted by density functional theory to exhibit “submarine” sandwich structures with a pair of metal atoms sandwiched between the two heptalene rings. For the early transition metal derivatives (C12H10)2M2 (M = V, Cr) there are two types of such structures. In one structural type the metals are sandwiched between two heptahapto heptalene rings with metal-metal distances (3.5–3.8 Å) too long for direct metal-metal bonding. The other type of (C12H10)2M2 (M = V, Cr, Mn) structure has a pair of bonded metal atoms sandwiched between a fully bonded heptalene ligand and a heptalene ligand bonded to the metals only through an eight-carbon heptafulvene subunit, leaving an uncomplexed cis-1,3-diene unit. The formal metal-metal bond orders in these latter structures are 3, 2, and 1 for M = V, Cr, and Mn with predicted bond lengths of 2.5, 2.7, and 2.8 Å, respectively. For (C12H10)2Fe2 a singlet structure with each iron atom sandwiched between a hexahapto and a tetrahapto heptalene ring is energetically preferred over an alternate structure with ferrocene-like iron atoms sandwiched between two pentahapto heptalene rings. Partial bonding of each heptalene ring to the metal atoms occurs in the late transition metal derivatives (C12H10)2M2 (M = Co, Ni). This leads to an unsymmetrical structure for the cobalt derivative and a structure for the nickel derivative with each nickel atom sandwiched between a trihapto ligand and a tetrahapto ligand.
Figure
The bis(heptalene) dimetal complexes (C12H10)2M2 (M = Ti to Ni) are predicted by density functional theory to have a “submarine” sandwich structure with a pair of metal atoms sandwiched between the two heptalene rings. In the early transition metal derivatives (C12H10)2M2 (M = V, Cr) the metal atoms are sandwiched between two heptahapto heptalene rings. In contrast, for (C12H10)2M2 (M = Mn, Fe, Co, Ni) the heptalene rings are only partially bonded to the metal atoms.  相似文献   

5.
We report here a novel detection scheme for simultaneous detection of NADH and H(2)O(2) based on a bifunctional poly(thionine)-modified electrode. Electropolymerization of thionine on a "preanodized" screen-printed carbon electrode effectively lowers the oxidation potential of NADH to 0.15 V (vs. Ag/AgCl). Since poly(thionine) is also a well known electrochemical mediator for H(2)O(2) reduction, we further developed a poly(thionine)-modified ring disk electrode for simultaneous measurement of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)) by flow injection analysis. By applying the optimized detection potentials of 0.2V and -0.2V at disk and ring electrodes, respectively, this system allows the simultaneous measurement of both analytes with good sensitivity (0.13 μA/mM for H(2)O(2) and 0.34 μA/mM for NADH) and limit of detection (1.74 μM and 26.0 μM for NADH and H(2)O(2)). This opens the possibility of a whole series of biosensor applications.  相似文献   

6.
Photosynthesis rate (An) becomes unstable above a threshold temperature, and the recovery upon return to low temperature varies because of reasons not fully understood. We investigated responses of An, dark respiration and chlorophyll fluorescence to supraoptimal temperatures of varying duration and kinetics in Phaseolus vulgaris asking whether the instability of photosynthesis under severe heat stress is associated with cellular damage. Cellular damage was assessed by Evans blue penetration (enhanced membrane permeability) and by H2O2 generation [3,3′‐diaminobenzidine 4HCl (DAB)‐staining]. Critical temperature for dark fluorescence (F0) rise (TF) was at 46–48 °C, and a burst of respiration was observed near TF. However, An was strongly inhibited already before TF was reached. Membrane permeability increased with temperature according to a switch‐type response, with enhanced permeability observed above 48 °C. Experiments with varying heat pulse lengths and intensities underscored the threshold‐type loss of photosynthetic function, and indicated that the degree of photosynthetic deterioration and cellular damage depended on accumulated heat‐dose. Beyond the ‘point of no return’, propagation of cellular damage and reduction of photosynthesis continued upon transfer to lower temperatures and photosynthetic recovery was slow or absent. We conclude that instability of photosynthesis under severe heat stress is associated with time‐dependent propagation of cellular lesions.  相似文献   

7.
8.
9.
A series of all-metal binuclear sandwich-like complexes with the formula M(2)(η(4)-E(4))(2) (M=Al, Ga, In; E=Sb, Bi) was studied by density functional theory (DFT). The most stable conformer for each of the M(2)(η(4)-E(4))(2) species is the staggered one with D (4d) symmetry. The centred metal-metal bond in each M(2)(η(4)-E(4))(2) species is a covalent single bond, with the main contributors to these covalent bonds being the a(1) and e orbitals. For all these species, the interactions between the centred metal atoms and the all-metal ligands are covalent; η(4)-Sb (4) (2-) has a stronger ability to stabilize metal-metal bonds than η(4)-Bi (4) (2-). Nucleus-independent chemical shifts (NICS) values and molecular orbital (MO) analysis reveal that the all-metal η(4)-Sb (4) (2-) and η(4)-Bi (4) (2-) ligands in M(2)(η(4)-E(4))(2) possess conflicting aromaticity (σ antiaromaticity and π aromaticity), which differs from the all-metal multiple aromatic unit Al (4) (2-). In addition, all of these M(2)(η(4)-E(4))(2) species are stable according to the dissociation energies of M(2)(η(4)-E(4))(2)?→?2 M(η(4)-E(4)) and M(2)(η(4)-E(4))(2)?→?2 M?+?2E(4), and these stable species can be synthesized by two-step substitution reactions: CpZnZnCp?+?2E (4) (2-) →?[E(4)ZnZnE(4)](2-)?+?2Cp(-) and [E(4)ZnZnE(4)](2-)?+?2 M (2) (+) →?E(4)MME(4)?+?2Zn(+).  相似文献   

10.
Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (~130 kg m?3). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH4)2 was predicted to form a destabilized system when it was mixed with LiBH4, NaBH4, or KBH4. The release of hydrogen from Ca(BH4)2 was predicted to proceed via two competing reaction pathways (leading to CaB6 and CaH2 or CaB12H12 and CaH2) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H2) with have low enthalpies [approximately 35 kJ/(mol?1 H2)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.
Figure
Calculated van’t Hoff plot for reactions (10-24*) listed in the Ca-M(Li, Na, K)-B-H system (Tables 24). The region within the rectangular box corresponds to desirable temperatures and pressures for on-board hydrogen storage PH2 = 1-700 bar and T = 233 to +355 K  相似文献   

11.
12.
Density functional theory was used for a quantum chemical study of oligo[methyl(phenyl)silylene] structures containing a conformational defect: a kink in the silicon backbone. Oligomers were studied in the neutral state as well as in the form of positive (P+) and negative (P?) polaron quasiparticles. Computations performed using the B3LYP model and the 6-31G(d) basis set revealed that the charge distribution is not influenced by the presence of the kink, but the positive charge on the Si backbone differs slightly in P+ and P? quasiparticles. On the other hand, the spin density is significantly shifted away from the chain part that contains the kink, and this effect is more intense in P? polarons. Changes in electron density are also evident from the frontier molecular orbital distribution. The deformation energy (which is associated with the relaxation of polarons) decreases with the number of atoms in the oligomer backbone in P+ but shows the opposite behavior for P? quasiparticles.  相似文献   

13.
《Inorganica chimica acta》1986,118(2):165-168
The crystal structure of NbT3O (T=O2H5C7) has been determined. Crystals are monoclinic; space group P21/c with a = 7.328(7), b = 16.669(13), c = 16.373(13) rho; ; β = 99.5(1)middot; and Z = 4.3382 reflections were collected on a diffractometer of which 1257 were used in the final refinement; the structure being refined to Rw = 0.087. The crystal contains discrete molecules of NbT3O in which the metal atom is seven coordinate having a distorted pentagonal-bipyramid configuration. The terminal oxygen atom occupies an axial position (1.712(14) rho; ). The NbO(trop) bond lengths range from 2.070(15) to 2.197(14) rho; . The analogous compounds NbT3S, and NbT3Se have been obtained by reaction of NbT3O with [(Me3Si)2Y] (Y = S or Se). These latter species are believed to contain terminal NbY bonds with the metal in a similar seven coordinate environment to that found for the oxo compound.  相似文献   

14.
15.
The structural, elastic and electronic properties of Co7M6 (M?=?W, Mo, Nb) μ phases were investigated by first-principles calculations based on the density functional theory (DFT). The calculated cohesive energy indicates that Co7M6 (M?=?W, Mo, Nb) μ phases are thermodynamically stable. Besides, Co7W6 owns a higher structural stability than that of Co7Mo6 and Co7Nb6. The obtained elastic constant demonstrates that Co7M6 (M?=?W, Mo, Nb) are mechanically stable. With Voigt-Reuss-Hill (VRH) approximation, the elastic bulk modulus (B), shear modulus (G), Young's modulus (E) and Poisson's ratio (ν) were derived. The ductility and plasticity as well as the elastic anisotropy of the three phases were discussed in details. Finally, the density of states and charge density difference were also analysed to reveal the underlying mechanism of structural stability and the elastic properties.  相似文献   

16.
The monogonont rotifer, Brachionus sp. has been regarded as a potential model for reproductive physiology, evolution, and environmental genomics. To uncover the role of the heat shock protein upon temperature stress and hydrogen peroxide (H?O?) exposure, we cloned heat shock protein 20 (Hsp20) and determined its modulatory response under different temperatures and H?O? concentrations. Under different temperature stresses (10 °C and 37 °C), the rotifer Brachionus sp. Hsp20 (Br-Hsp20) gene was highly expressed over time, and reached the maximum level 90 min after exposure, indicating that Br-Hsp20 gene would be involved in the chaperoning process to protect proteins at both low and high temperatures. To test the ability of thermotolerance of the recombinant Br-Hsp20-containing transformed Escherichia coli, we expressed the recombinant Br-Hsp20 protein with 1mM IPTG for 18 h at 30 °C, exposed them at 54 °C with time course (10 to 60 min), and measured cell survival. In this elevated temperature shock (54 °C), the cell survival was significantly higher at the Br-Hsp20 transformed E. coli, compared to the control (vector only). To analyze the modulatory effect of Br-Hsp20 gene on oxidative stress, we initially exposed 0.1 mM H?O? over time and measured antioxidant enzyme activities along with the expression level of Br-Hsp20 mRNA. Upon H?O? exposure, Br-Hsp20 gene was time-dependently upregulated and glutathione peroxidase (GPx), glutathione S-transferase (GST), and glutathione reductase (GR) activities were also elevated at the 12h-exposed group in a dose-dependent manner, indicating that the Br-Hsp20 gene would be an important gene in response to oxidative and temperature stress. Here, we demonstrated the role of the Hsp20 gene in the rotifer, Brachionus sp. providing a better understanding of the ecophysiology at environmental stress in this species.  相似文献   

17.
《Inorganica chimica acta》1988,141(2):253-261
Even though the α-diimino complexes [MCl2(RNCHCHNR)] and [MCl2(py-2-CHNR)] (M=Pd, Pt;R=C6H4OMe-p) are poorly soluble in chlorinated solvents, such as chloroform and 1,2-dichloroethane, or in acetonitrile, the electronic and 1H NMR spectra indicate that these compounds are generally present as undissociate monomers with σ, σ′-N,N′ chelate N-ligands in dilute solutions. Only for [PdCl2(RNCHCHNR)], some dissociation of the α-diimine occurs in acetonitrile. In dimethylsulfoxide, where the solubility is much higher, no dissociation is observed for the pyridine-2-carbaldimine complexes [MCl2(py-2-CHNR)], whereas the 1,2-bis(imino) ethane derivatives [MCl2(RNCHCHNR)] are extensively dissociated through a step-wise process involving intermediates with a σ-N monodentate α-diimino group. As is shown by the course of substitution reactions with 2,2′-bipyridine, the higher stability of [MCl2(py-2-CHNR)] in dimethylsulfoxide is mainly due to thermodynamic factors (ground state stabilization for the presence of stronger MN bonds) rather than by kinetic factors (higher activation energy for steric strain in the activation states or transients).  相似文献   

18.
Under high-level ab initio calculations, the geometrical structures and nonlinear optical properties of M@P4 (M=Li, Na, K and Li3O) and M@C3H6 (M=Li and Li3O) were investigated; all were found to exhibit considerable first hyperpolarizabilities (18110, 1440, 22490, 50487, 2757 and 31776 au, respectively). The computational results revealed that when doping the (super)alkali atom M into the tetrahedral P4 molecule, the original dual spherical aromaticity of the P4 moiety is broken and new σ electron cloud is formed on the face of P4 part interacting with the M atom. It was found that interaction of the (super)alkali atom with the σ electron cloud is a novel mode to produce diffuse excess electrons effectively to achieve a considerable β 0 value. Further, beyond the alkali atom, employing the superalkali unit can be a more effective approach to significantly enhance the first hyperpolarizability of the systems, due to the much lower vertical ionization potential. These results were further supported by the case of the (super)alkali atom interacting with the cyclopropane C3H6 molecule with its typical σ aromatic electron cloud. Moreover, the β 0 values of the M@P4 series are nonmonotonic dependent on alkali atomic number, namely, 1440 au (M?=?Na)?<?18110 au (Li)?<?22490 au (K), inferring that the distance between the alkali atom and the interacting surface with the σ electron cloud in P4 is a crucial geometrical factor in determining their first hyperpolarizabilities. These intriguing findings will be advantageous for promoting the design of novel high-performance nonlinear optical materials.
Figure
A new mode through a (super)alkali atom interacting with the σ electron cloud is proposed to introduce diffuse excess electrons, which leads to large first hyperpolarizability (β 0) in the sampled M@P4 and M@C3H6 (M=Li, Na, K and Li3O) series. Doping the superalkali atom could be an effective approach to enhancing the β 0 value of these systems because of the much lower vertical ionization potential  相似文献   

19.
《Inorganica chimica acta》1988,148(2):233-240
The complexes CodptX3 and [Codpt(H2O)X2]ClO4 (X = Cl, Br; dpt = dipropylenetriamine = NH(CH2CH2CH2NH2)2) have been prepared and characterized. Rate constants (s−1) for aqueous solution at 25 °C and μ = 0.5 M (NaClO4), for the acid-independent sequential ractions.
have been measured spectrophotometrically. For X = Cl: k1 ⋍ 2 × 10−2, k2 = 1.7 × 10−4 and k3 = 4.8 × 10−6, and for X = Br: k1 ⋍ 2 × 10−2, k2 = 5.25 × 10−4 and k3 = 2.5 × 10−5 The primary equation was found to be acid independent, while the secondary and tertiary aquations were acid-inhibited reactions. For the second step, the rate of the reaction was given by the rate equation
where Ct is the complex concentration in the aqua-and hydroxodihalo species, k2 is the rate constant for the acid-dependent pathway and Ka is the equilibrium constant between the hydroxo and aqua complex ions. The activation parameters were evaluated, for X = Cl: ΔH2 = 106.3 ± 0.4 kJ mol−1 and ΔS2 = 40.2 ± 1.7 J K−1 mol, and for X = Br: ΔH2 = 91.6 ± 0.4 kJ mol−1 and ΔS2 = 0.4 ± 1.7 J K−1 mol−1. The results are discussed and detailed comparisons of the reactivities of these complexes with other haloaminecobalt(III) species are presented.  相似文献   

20.
This computational study is intended to shed light on the crystalline and molecular structure, together with the hydrogen bonding (H-bonding) differences between two forms of native cellulose. DFT calculations were carried out to characterize the 17O, 1H and 13C nuclear magnetic resonance (NMR) parameters in cellulose Iα and Iβ with the B3LYP functional employing the 6–311++G7 and 6–31+G1 basis sets. Geometry optimization revealed that the average HB length is shortened by 0.01–0.08 Å when the chains are aligned, whereas the average bond angle increases by about 4–8° exhibiting the enhancement of HB strength. For the isolated cellotetramer chains, the isotropic 17O–H chemical shifts were plotted as a function of HB length. Our results indicated that as the HB length in cellotetramer Iα increases, the 17O–H chemical shift isotropy increases, but this parameter changes in the opposite direction for the other structure. Moreover, B3LYP/6–311++G7 calculations reveal that there is an acceptable correlation between the calculated 13C chemical shifts of the two structures and their experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号