首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whitten ST  Kurtz AJ  Pometun MS  Wand AJ  Hilser VJ 《Biochemistry》2006,45(34):10163-10174
Recent advances in NMR methodology have enabled the structural analysis of proteins at temperatures far below the freezing point of water, thus opening a window to the cold denaturation process. Although the phenomenon of cold denaturation has been known since the mid-1970s, the freezing point of water has prevented detailed and structurally resolved studies without application of additional significant perturbations of the protein ensemble. As a result, the cold-denatured state and the process of cold denaturation have gone largely unstudied. Here, the structural and thermodynamic basis of cold denaturation is explored with emphasis placed on the insights that are uniquely ascertained from low-temperature studies. It is shown that the noncooperative cold-induced unfolding of protein results in the population of partially folded states that cannot be accessed by other techniques. The structurally resolved view of the cold denaturation process therefore can provide direct access to the cooperative substructures within the protein molecule and provide an unprecedented structurally resolved picture of the states that comprise the native state ensemble.  相似文献   

2.
Cryo-cooling is routinely performed before x-ray diffraction image collection to reduce the damage to crystals due to ionizing radiation. It has been suggested that although backbone structures are usually very similar between room temperature and cryo-temperature, cryo-cooling may hamper biologically relevant dynamics. In this study, the crystal of Escherichia coli dihydrofolate reductase is studied with replica-exchange molecular dynamics simulation, and the results are compared with the crystal structure determined at cryo-temperature and room temperature with the time-averaged ensemble method. Although temperature dependence of unit cell compaction and root mean-square fluctuation of Cα is found in accord with experiment, it is found that the protein structure at low temperature can be more heterogeneous than the ensemble of structures reported by using the time-averaged ensemble method, encouraging further development of the time-averaged ensemble method and indicating that data should be examined carefully to avoid overinterpretation of one average structure.  相似文献   

3.
The trehalose/maltose-binding protein (MalE1) is one component of trehalose and maltose uptake system in the thermophilic organism Thermus thermophilus. MalE1 is a monomeric 48 kDa protein predominantly organized in alpha-helix conformation with a minor content of beta-structure. In this work, we used Fourier-infrared spectroscopy and in silico methodologies for investigating the structural stability properties of MalE1. The protein was studied in the absence and in the presence of maltose as well as in the absence and in the presence of SDS at different p(2)H values (neutral p(2)H and at p(2)H 9.8). In the absence of SDS, the results pointed out a high thermostability of the MalE1 alpha-helices, maintained also at basic p(2)H values. However, the obtained data also showed that at high temperatures the MalE1 beta-sheets underwent to structural rearrangements that were totally reversible when the temperature was lowered. At room temperature, the addition of SDS to the protein solution slightly modified the MalE1 secondary structure content by decreasing the protein thermostability. The infrared data, corroborated by molecular dynamics simulation experiments performed on the structure of MalE1, indicated that the protein hydrophobic interactions have an important role in the MalE1 high thermostability. Finally, the results obtained on MalE1 are also discussed in comparison with the data on similar thermostable proteins already studied in our laboratories.  相似文献   

4.
Here we present an algorithm designed to carry out multiple structure alignment and to detect recurring substructural motifs. So far we have implemented it for comparison of protein structures. However, this general method is applicable to comparisons of RNA structures and to detection of a pharmacophore in a series of drug molecules. Further, its sequence order independence permits its application to detection of motifs on protein surfaces, interfaces, and binding/active sites. While there are many methods designed to carry out pairwise structure comparisons, there are only a handful geared toward the multiple structure alignment task. Most of these tackle multiple structure comparison as a collection of pairwise structure comparison tasks. The multiple structural alignment algorithm presented here automatically finds the largest common substructure (core) of atoms that appears in all the molecules in the ensemble. The detection of the core and the structural alignment are done simultaneously. The algorithm begins by finding small substructures that are common to all the proteins in the ensemble. One of the molecules is considered the reference; the others are the source molecules. The small substructures are stored in special arrays termed combinatorial buckets, which define sets of multistructural alignments from the source molecules that coincide with the same small set of reference atoms (C(alpha)-atoms here). These substructures are initial small fragments that have congruent copies in each of the proteins. The substructures are extended, through the processing of the combinatorial buckets, by clustering the superpositions (transformations). The method is very efficient.  相似文献   

5.
It is widely recognized that representing a protein as a single static conformation is inadequate to describe the dynamics essential to the performance of its biological function. We contrast the amino acid displacements below and above the protein dynamical transition temperature, TD∼215K, of hen egg white lysozyme using X-ray crystallography ensembles that are analyzed by molecular dynamics simulations as a function of temperature. We show that measuring structural variations across an ensemble of X-ray derived models captures the activation of conformational states that are of functional importance just above TD, and they remain virtually identical to structural motions measured at 300K. Our results highlight the ability to observe functional structural variations across an ensemble of X-ray crystallographic data, and that residue fluctuations measured in MD simulations at room temperature are in quantitative agreement with the experimental observable.  相似文献   

6.
An enhanced conformational sampling method, multicanonical molecular dynamics (McMD), was applied to the ab intio folding of the 57-residue first repeat of human glutamyl- prolyl-tRNA synthetase (EPRS-R1) in explicit solvent. The simulation started from a fully extended structure of EPRS-R1 and did not utilize prior structural knowledge. A canonical ensemble, which is a conformational ensemble thermodynamically probable at an arbitrary temperature, was constructed by reweighting the sampled structures. Conformational clusters were obtained from the canonical ensemble at 300 K, and the largest cluster (i.e., the lowest free-energy cluster), which contained 34% of the structures in the ensemble, was characterized by the highest similarity to the NMR structure relative to all alternative clusters. This lowest free-energy cluster included native-like structures composed of two anti-parallel α-helices. The canonical ensemble at 300 K also showed that a short Gly-containing segment, which adopts an α-helix in the native structure, has a tendency to be structurally disordered. Atomic-level analyses demonstrated clearly that inter-residue hydrophobic interactions drive the helix formation of the Gly-containing segment, and that increasing the hydrophobic contacts accompanies exclusion of water molecules from the vicinity of this segment. This study has shown, for the first time, that the free-energy landscape of a structurally well-ordered protein of about 60 residues is obtainable with an all atom model in explicit water without prior structural knowledge.  相似文献   

7.
We present results from an extensive molecular dynamics simulation study of water hydrating the protein Ribonuclease A, at a series of temperatures in cluster, crystal, and powder environments. The dynamics of protein hydration water appear to be very similar in crystal and powder environments at moderate to high hydration levels. Thus, we contend that experiments performed on powder samples are appropriate for discussing hydration water dynamics in native protein environments. Our analysis reveals that simulations performed on cluster models consisting of proteins surrounded by a finite water shell with free boundaries are not appropriate for the study of the solvent dynamics. Detailed comparison to available x-ray diffraction and inelastic neutron-scattering data shows that current generation force fields are capable of accurately reproducing the structural and dynamical observables. On the time scale of tens of picoseconds, at room temperature and high hydration, significant water translational diffusion and rotational motion occur. At low hydration, the water molecules are translationally confined but display appreciable rotational motion. Below the protein dynamical transition temperature, both translational and rotational motions of the water molecules are essentially arrested. Taken together, these results suggest that water translational motion is necessary for the structural relaxation that permits anharmonic and diffusive motions in proteins. Furthermore, it appears that the exchange of protein-water hydrogen bonds by water rotational/librational motion is not sufficient to permit protein structural relaxation. Rather, the complete exchange of protein-bound water molecules by translational displacement seems to be required.  相似文献   

8.
Mao HB  Li GF  Li DH  Wu QY  Gong YD  Zhang XF  Zhao NM 《FEBS letters》2003,553(1-2):68-72
The effects of glycerol and high temperatures on structure and function of phycobilisomes (PBSs) in vivo were investigated in a chlL deletion mutant of the cyanobacterium Synechocystis sp. PCC 6803. When the mutant was grown under light-activated heterotrophic growth conditions, it contained intact and functional PBSs, but essentially no chlorophyll and photosystems. So the structural and functional changes of the mutant PBSs in vivo can be handily detected by measurement of low temperature (77 K) fluorescence emission spectra. High concentration glycerol induced an obvious disassembly of PBSs and the dissociation of phycocyanins in the rod substructures into their oligomers and monomers. PBSs also disassembled at high temperatures and allophycocyanins were more sensitive to heat stress than phycocyanins. Our results demonstrate that the chlL(-) mutant strain is an advantageous model for studying the mechanisms of assembly and disassembly of protein complexes in vivo.  相似文献   

9.
Evolutionary models of molecular structures must incorporate molecular information at different levels of structural complexity and must be phrased within a phylogenetic perspective. In this regard, phylogenetic trees of substructures that are reconstructed from molecular features that contribute to order and thermodynamic stability show that a gradual model of evolution of 5S rRNA structure is more parsimonious than models that invoke large segmental duplications of the molecule. The search for trees of substructures that are most parsimonious, by their very nature, defines an objective strategy to select models of molecular change that best fit structural data. When combined with additional data, such as the age of protein domains that interact with RNA substructures, these trees can be used to falsify unlikely hypotheses.  相似文献   

10.
Kumar S  Tsai CJ  Nussinov R 《Biochemistry》2003,42(17):4864-4873
The difference between the heat (T(G)) and the cold (T(G)') denaturation temperatures defines the temperature range (T(Range)) over which the native state of a reversible two-state protein is thermodynamically stable. We have performed a correlation analysis for thermodynamic parameters in a selected data set of structurally nonhomologous single-domain reversible two-state proteins. We find that the temperature range is negatively correlated with the protein size and with the heat capacity change (DeltaC(p)) but is positively correlated with the maximal protein stability [DeltaG(T(S))]. The correlation between the temperature range and maximal protein stability becomes highly significant upon normalization of the maximal protein stability with protein size. The melting temperature (T(G)) also shows a negative correlation with protein size. Consistently, T(G) and T(G)' show opposite correlations with DeltaC(p), indicating a dependence of the T(Range) on the curvature of the protein stability curve. Substitution of proteins in our data set with their homologues and arbitrary addition or removal of a protein in the data set do not affect the outcome of our analysis. Simulations of the thermodynamic data further indicate that T(Range) is more sensitive to variations in curvature than to the slope of the protein stability curve. The hydrophobic effect in single domains is the principal reason for these observations. Our results imply that larger proteins may be stable over narrower temperature ranges and that smaller proteins may have higher melting temperatures, suggesting why protein structures often differentiate into multiple substructures with different hydrophobic cores. Our results have interesting implications for protein thermostability.  相似文献   

11.
A structural interpretation of the thermodynamic stability of proteins requires an understanding of the structural properties of the unfolded state. High-pressure small-angle x-ray scattering was used to measure the effects of temperature, pressure, denaturants, and stabilizing osmolytes on the radii of gyration of folded and unfolded state ensembles of staphylococcal nuclease. A set of variants with the internal Val-66 replaced with Ala, Tyr, or Arg was used to examine how changes in the volume and polarity of an internal microcavity affect the dimensions of the native state and the pressure sensitivity of the ensemble. The unfolded state ensembles achieved for these proteins with high pressure were more compact than those achieved at high temperature, and were all very sensitive to the presence of urea and glycerol. Substitutions at the hydrophobic core detectably altered the conformation of the protein, even in the folded state. The introduction of a charged residue, such as Arg, inside the hydrophobic interior of a protein could dramatically alter the structural properties, even those of the unfolded state. The data suggest that a charge at an internal position can interfere with the formation of transient hydrophobic clusters in the unfolded state, and ensure that the pressure-unfolded form of a protein occupies the maximum volume possible. Only at high temperatures does the radius of gyration of the unfolded state ensemble approach the value for a statistical random coil.  相似文献   

12.
The modern view of protein thermodynamics predicts that proteins undergo cold-induced unfolding. Unfortunately, the properties of proteins and water conspire to prevent the detailed observation of this fundamental process. Here we use protein encapsulation to allow cold denaturation of the protein ubiquitin to be monitored by high-resolution NMR at temperatures approaching -35 degrees C. The cold-induced unfolding of ubiquitin is found to be highly noncooperative, in distinct contrast to the thermal melting of this and other proteins. These results demonstrate the potential of cold denaturation as a means to dissect the cooperative substructures of proteins and to provide a rigorous framework for testing statistical thermodynamic treatments of protein stability, dynamics and function.  相似文献   

13.
NMR-based structural biology of proteins can be pursued efficiently in supercooled water at temperatures well below the freezing point of water. This enables one to study protein structure, dynamics, hydration and cold denaturation in an unperturbed aqueous solution at very low temperatures. Furthermore, such studies enable one to accurately measure thermodynamic parameters associated with protein cold denaturation. Presently available approaches to acquire NMR data for supercooled aqueous protein solutions are surveyed, new insights obtained from such studies are summarized, and future perspectives are discussed.  相似文献   

14.
Molecular dynamics simulations of protein folding and unfolding are often carried out at temperatures (400-600 K) that are much higher than physiological or room temperature to speed up the (un)folding process. Use of such high temperatures changes both the protein and solvent properties considerably, compared to physiological or room temperature. Water models designed for use in conjunction with biomolecules, such as the simple point charge (SPC) model, have generally been calibrated at room temperature and pressure. To determine the distortive effect of high simulation temperatures on the behavior of such "room temperature" water models, the structural, dynamic, and thermodynamic properties of the much-used SPC water model are investigated in the temperature range from 300 to 500 K. Both constant pressure and constant volume conditions, as used in protein simulations, were analyzed. We found that all properties analyzed change markedly with increasing temperature, but no phase transition in this temperature range was observed.  相似文献   

15.
The observation that ectotherm size decreases with increasing temperature (temperature‐size rule; TSR) has been widely supported. This phenomenon intrigues researchers because neither its adaptive role nor the conditions under which it is realized are well defined. In light of recent theoretical and empirical studies, oxygen availability is an important candidate for understanding the adaptive role behind TSR. However, this hypothesis is still undervalued in TSR studies at the geographical level. We reanalyzed previously published data about the TSR pattern in diatoms sampled from Icelandic geothermal streams, which concluded that diatoms were an exception to the TSR. Our goal was to incorporate oxygen as a factor in the analysis and to examine whether this approach would change the results. Specifically, we expected that the strength of size response to cold temperatures would be different than the strength of response to hot temperatures, where the oxygen limitation is strongest. By conducting a regression analysis for size response at the community level, we found that diatoms from cold, well‐oxygenated streams showed no size‐to‐temperature response, those from intermediate temperature and oxygen conditions showed reverse TSR, and diatoms from warm, poorly oxygenated streams showed significant TSR. We also distinguished the roles of oxygen and nutrition in TSR. Oxygen is a driving factor, while nutrition is an important factor that should be controlled for. Our results show that if the geographical or global patterns of TSR are to be understood, oxygen should be included in the studies. This argument is important especially for predicting the size response of ectotherms facing climate warming.  相似文献   

16.
Endoglucanase D from Clostridium thermocellum was purified from inclusion bodies formed upon its overproduction in Escherichia coli, using 5 M urea as a solubilizing solution. We examined the effects of denaturing agents upon the stability of the pure soluble enzyme as a function of the temperature. At room temperature, guanidinium chloride induces an irreversible denaturation. By comparison, we observed no structural or functional effects at room temperature using high concentrations of urea as denaturing agent. The irreversible denaturation process observed with guanidinium chloride also occurs with urea but only at elevated temperature (greater than or equal to 60 degrees C); in 6 M urea, the activation energy of the denaturation reaction is decreased by a factor of only 1.8. We interpret the high resistance of this protein to urea as reflecting a reduced flexibility of its structure at normal temperatures which should be correlated to the thermophilic origin of this protein.  相似文献   

17.
The cold denaturation of globular proteins is a process that can be caused by increasing pressure or decreasing the temperature. Currently, the action mechanism of this process has not been clearly understood, raising an interesting debate on the matter. We have studied the process of cold denaturation using molecular dynamics simulations of the frataxin system Yfh1, which has a dynamic experimental characterization of unfolding at low and high temperatures. The frataxin model here studied allows a comparative analysis using experimental data. Furthermore, we monitored the cold denaturation process of frataxin and also investigated the effect under the high‐pressure regime. For a better understanding of the dynamics and structural properties of the cold denaturation, we also analyzed the MD trajectories using essentials dynamic. The results indicate that changes in the structure of water by the effect of pressure and low temperatures destabilize the hydrophobic interaction modifying the solvation and the system volume leading to protein denaturation. Proteins 2016; 85:125–136. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
It is known from ensemble spectroscopy at cryogenic temperatures that variants of the Aequorea green fluorescent protein (GFP) occur in interconvertible spectroscopically distinct forms which are obscured in ensemble room temperature spectroscopy. By analyzing the fluorescence of the GFP variants EYFP and EGFP by spectrally resolved single-molecule spectroscopy we were able to observe spectroscopically different forms of the proteins and to dynamically monitor transitions between these forms at room temperature. In addition to the predominant EYFP B-form we have observed the blue-shifted I-form thus far only seen at cryogenic temperatures and have followed transitions between these forms. Further we have identified for EYFP and for EGFP three more, so far unknown, forms with red-shifted fluorescence. Transitions between the predominant forms and the red-shifted forms show a dark time which indicates the existence of a nonfluorescent intermediate. The spectral position of the newly-identified red-shifted forms and their formation via a nonfluorescent intermediate hint that these states may account for the possible photoactivation observed in bulk experiments. The comparison of the single-protein spectra of the red-shifted EYFP and EGFP forms with single-molecule fluorescence spectra of DsRed suggest that these new forms possibly originate from an extended chromophoric pi-system analogous to the DsRed chromophore.  相似文献   

19.
Structure and hydration of purple membranes in different conditions   总被引:6,自引:0,他引:6  
The unit cell dimension of the bacteriorhodopsin lattice in purple membranes decreases by the same amount (2%) upon drying the membranes at room temperature as when they are cooled to liquid nitrogen temperatures. Neutron diffraction experiments with H2O:2H2O exchange, however, show that whereas in the dry membranes the lipid headgroups are dehydrated and the decrease in dimension is due to a smaller area occupied by the lipid molecules, the water of hydration remains in place in the cooled membranes, and the decrease in dimension is due to thermal contraction only. These data suggest a hypothesis that functional bacteriorhodopsin, in the wet state at room temperature, has a relatively soft environment that would allow large amplitude motions of the protein; in the dry membranes at room temperature (which are inactive), the amplitudes of protein motions would be inhibited by a more close-packed environment as they are reduced, due to thermal contraction, in the cold membranes.  相似文献   

20.
Retention of required structural and functional properties of proteins in species adapted to different temperatures and pressures is achieved through variation in amino acid sequence and accumulation of small organic solutes that stabilize protein traits. Conservation of ligand binding and catalytic rate can be achieved by minor differences in sequence. For orthologs of lactate dehydrogenase-A (A4-LDH) temperature adaptation may involve only a single amino acid substitution. Adaptation involves changes in conformational mobility of regions of A4-LDH that undergo movement during ligand binding, movements that are rate-limiting to catalysis. A model that integrates adaptations in sequence and intracellular milieu is developed on the basis of conformational microstates. Although orthologs of different thermally adapted species vary in stability, at physiological temperatures it is hypothesized that a similar ensemble of conformational microstates exists for all orthologs. Organic solutes stabilize this ensemble of microstates. Differences among orthologs in responses to organic solutes at a common temperature lead to similar responses at normal body temperatures. Because protein stability increases at high protein concentrations, intrinsic stabilities of proteins may reflect the protein concentrations of the cellular compartments in which they occur. Protein–stabilizing solutes like trimethylamine-N-oxide (TMAO) conserve protein function and structure at elevated hydrostatic pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号