首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Xylan is the major hemicellulose in dicot wood. Unraveling genes involved in the biosynthesis of xylan will be of importance in understanding the process of wood formation. In this report, we investigated the possible role of poplar GT47C, a glycosyltransferase belonging to family GT47, in the biosynthesis of xylan. PoGT47C from the hybrid poplar Populus alba x tremula exhibits 84% sequence similarity to Fragile fiber8 (FRA8), which is involved in the biosynthesis of glucuronoxylan in Arabidopsis. Phylogenetic analysis of glycosyltransferase family GT47 in the Populus trichocarpa genome revealed that GT47C is the only close homolog of FRA8. In situ hybridization showed that the PoGT47C gene was expressed in developing primary xylem, secondary xylem and phloem fibers of stems, and in developing secondary xylem of roots. Sequence analysis suggests that PoGT47C is a type II membrane protein, and study of the subcellular localization demonstrated that fluorescent protein-tagged PoGT47C was located in the Golgi. Immunolocalization with a xylan monoclonal antibody LM10 revealed a nearly complete loss of xylan signals in the secondary walls of fibers and vessels in the Arabidopsis fra8 mutant. Expression of PoGT47C in the fra8 mutant restored the secondary wall thickness and xylan content to the wild-type level. Together, these results suggest that PoGT47C is functionally conserved with FRA8 and it is probably involved in xylan synthesis during wood formation.  相似文献   

13.
Cytokinins are essential hormones in plant development. Arabidopsis histidine-containing phosphotransfer proteins (AHPs) are mediators in a multistep phosphorelay pathway for cytokinin signaling. The exact role of AHP4 has not been elucidated. In this study, we demonstrated young flower-specific expression of AHP4, and compared AHP4-overexpressing (Ox) trangenic Arabidopsis lines and an ahp4 knock-out line. AHP4-Ox plants had reduced fertility due to a lack of secondary cell wall thickening in the anther endothecium and inhibition of IRREGURAR XYLEMs (IRXs) expression in young flowers. Conversely, ahp4 anthers had more lignified anther walls than the wild type, and increased IRXs expression. Our study indicates that AHP4 negatively regulates thickening of the secondary cell wall of the anther endothecium, and provides new insight into the role of cytokinins in formation of secondary cell walls via the action of AHP4.  相似文献   

14.
15.
16.
17.

Background  

Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution.  相似文献   

18.

Background

Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2??, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2??1 and PfCK2??2.

Results

We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2??1 and PfCK2??2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2??, HA-PfCK2??1 or HA-PfCK2??2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2??1- and PfCK2??2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2??1 and PfCK2??2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2?? in vitro.

Conclusions

Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.  相似文献   

19.
In higher plants, molecular mechanisms regulating shoot apical meristem (SAM) formation and organ separation are largely unknown. The CUC1 (CUP-SHAPED COTYLEDON1) and CUC2 are functionally redundant genes that are involved in these processes. We cloned the CUC1 gene by a map-based approach, and found that it encodes a NAC-domain protein highly homologous to CUC2. CUC1 mRNA was detected in the presumptive SAM during embryogenesis, and at the boundaries between floral organ primordia. Surprisingly, overexpression of CUC1 was sufficient to induce adventitious shoots on the adaxial surface of cotyledons. Expression analyses in the overexpressor and in loss-of-function mutants suggest that CUC1 acts upstream of the SHOOT MERISTEMLESS gene.  相似文献   

20.
Hossain Z  McGarvey B  Amyot L  Gruber M  Jung J  Hannoufa A 《Planta》2012,235(3):485-498
Brassinosteroids (BRs) play a crucial role in plant growth and development and DIMINUTO 1 (DIM1), a protein involved in BR biosynthesis, was previously identified as a cell elongation factor in Arabidopsis thaliana. Through promoter expression analysis, we showed that DIM1 was expressed in most of the tissue types in seedlings and sectioning of the inflorescence stem revealed that DIM1 predominantly localizes to the xylem vessels and in the interfascicular cambium. To investigate the role of DIM1 in cell wall formation, we generated loss-of-function and gain-of-function mutants. Disruption of the gene function caused a dwarf phenotype with up to 38 and 23% reductions in total lignin and cellulose, respectively. Metabolite analysis revealed a significant reduction in the levels of fructose, glucose and sucrose in the loss-of-function mutant compared to the wild type control. The loss-of-function mutant also had a lower S/G lignin monomer ratio relative to wild type, but no changes were detected in the gain-of-function mutant. Phloroglucinol and toluidine blue staining showed a size reduction of the vascular apparatus with smaller and disintegrated xylem vessels in the inflorescence stem of the loss-of-function mutant. Taken together, these data indicate a role for DIM1 in secondary cell wall formation. Moreover, this study demonstrated the potential role of BR hormones in modulating cell wall structure and composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号